A hybrid feature extraction and machine learning approaches for epileptic seizure detection

被引:0
|
作者
Dinesh Kumar Atal
Mukhtiar Singh
机构
[1] Delhi Technological University,Department of Electrical Engineering
关键词
Electroencepharogram (EEG) signal; Epileptic seizure detection; Enhanced curvelet transformation (ECT); Modified graph theory (MRT); Novel pattern transformation (NPT); Novel random forest classification (NRFC);
D O I
暂无
中图分类号
学科分类号
摘要
Epileptic seizure detection from the brain EEG signals is an essential step for speeding up the diagnosis that assists researchers and medical professionals. For this, various classification signal processing techniques have been developed in the traditional works. Still, they limit with the problems of increased complexity, reduced performance and insufficient classification rate. This motivates to design an automatic system for classifying the normal and abnormal EEG signals. Thus, an efficient machine learning approaches are implemented in this work, to overcome the existing techniques limitations. Here, an enhanced curvelet transform technique is established in order to overcome the disadvantage of Gabor and Wavelet transformations data loss and indiscriminate orientations. This method has the capacity to furnish the all the signals data required with no information loss of shearlet transformation and hence implemented to preprocess the given EEG signal, which smoothen the signal by eliminating the noise. Then, a modified graph theory, fractal dimension and novel pattern transformation techniques are employed to extract the features and patterns. The extraction of features is crucial for classification and compression of huge volume of EEG signal that possess low information. This theory improves the precision and speed of the computational technique. Most of the current research, Graph theory is reflected in the area of quantitative description of the time series data. It is predominantly employed for the reduction of noise and not affected during choosing the factors. From the patterns, the statistical features are extracted by using a standard gray level co-occurrence matrix technique that comprises entropy, homogeneity, energy, correlation and maximum probability. This method calculates the linear dependency of the adjacent samples thereby effective measurement of information loss in the transmitted signal is accomplished. Then, these extracted features are fed to the classifier named as novel random forest classification for detecting and classifying the signal as healthy, ictal and interictal. During simulation, various performance measures have been used for evaluating the results of existing and proposed classification techniques and results validate the efficacy of proposed technique.
引用
收藏
页码:503 / 525
页数:22
相关论文
共 50 条
  • [31] Epileptic seizure detection in EEG signal using machine learning techniques
    Abeg Kumar Jaiswal
    Haider Banka
    Australasian Physical & Engineering Sciences in Medicine, 2018, 41 : 81 - 94
  • [32] Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals
    Liu, Jian
    Du, Yipeng
    Wang, Xiang
    Yue, Wuguang
    Feng, Jim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1995 - 2011
  • [33] RETRACTED: Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches (Retracted Article)
    Natu, Milind
    Bachute, Mrinal
    Gite, Shilpa
    Kotecha, Ketan
    Vidyarthi, Ankit
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [34] Hybrid metaheuristic algorithm enhanced support vector machine for epileptic seizure detection
    Divya, P.
    Devi, B. Aruna
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [35] New feature extraction for automated detection of epileptic seizure using complex network framework
    Supriya, Supriya
    Siuly, Siuly
    Wang, Hua
    Zhang, Yanchun
    APPLIED ACOUSTICS, 2021, 180
  • [36] Detection of epileptic seizure in EEG signals using machine learning and deep learning techniques
    Kunekar P.
    Gupta M.K.
    Gaur P.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [37] Epileptic Seizure Detection in EEG Signals Using Machine Learning and Deep Learning Techniques
    Kode, Hepseeba
    Elleithy, Khaled
    Almazaydeh, Laiali
    IEEE ACCESS, 2024, 12 : 80657 - 80668
  • [38] A new design of epileptic seizure detection using hybrid heuristic-based weighted feature selection and ensemble learning
    Vedavati Bhandari
    Manjaiah Doddaghatta Huchaiah
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 668 - 693
  • [39] A new design of epileptic seizure detection using hybrid heuristic-based weighted feature selection and ensemble learning
    Bhandari, Vedavati
    Huchaiah, Manjaiah Doddaghatta
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 668 - 693
  • [40] A Machine Learning Approach to the Smartwatch-based Epileptic Seizure Detection System
    Gaurav, G.
    Shukla, Rahul
    Singh, Gagandeep
    Sahani, Ashish Kumar
    IETE JOURNAL OF RESEARCH, 2024, 70 (01) : 791 - 803