Randomized large distortion dimension reduction

被引:0
|
作者
Alon Dmitriyuk
Yehoram Gordon
机构
[1] Technion,Department of Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Local theory; Gaussian processes; High dimensional geometry; Convexity; Normed linear spaces; Gaussian operators; Empirical processes; 46B09; 46B07;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a random matrix H:Rn⟶Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H:{\mathbb {R}}^{n}\longrightarrow {\mathbb {R}}^{m}$$\end{document}. Let D≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\ge 2$$\end{document} and let {Wl}l=1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{W_l\}_{l=1}^{p}$$\end{document} be a set of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-dimensional affine subspaces of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}. We ask what is the probability that for all 1≤l≤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le l\le p$$\end{document} and x,y∈Wl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in W_l$$\end{document}, ‖x-y‖2≤‖Hx-Hy‖2≤D‖x-y‖2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert x-y\Vert _2\le \Vert Hx-Hy\Vert _2\le D\Vert x-y\Vert _2. \end{aligned}$$\end{document}We show that for m=O(k+lnplnD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=O\big (k+\frac{\ln {p}}{\ln {D}}\big )$$\end{document} and a variety of different classes of random matrices H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, which include the class of Gaussian matrices, existence is assured and the probability is very high. The estimate on m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is tight in terms of k,p,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k,p,D$$\end{document}.
引用
收藏
页码:767 / 784
页数:17
相关论文
共 50 条
  • [41] Haematology dimension reduction, a large scale application to regular care haematology data
    Joosse, Huibert-Jan
    Chumsaeng-Reijers, Chontira
    Huisman, Albert
    Hoefer, Imo E.
    van Solinge, Wouter W.
    Haitjema, Saskia
    van Es, Bram
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [42] Dimension Reduction and Controller Design for Large Scale Systems Using Balanced Truncation
    Maurya, Manoj Kumar
    Kumar, Awadhesh
    2017 1ST INTERNATIONAL CONFERENCE ON ELECTRONICS, MATERIALS ENGINEERING & NANO-TECHNOLOGY (IEMENTECH), 2017,
  • [43] Applications of response dimension reduction in large p-small n problems
    Kim, Minjee
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2024, 31 (02) : 191 - 202
  • [44] Evolutionary Design of Relatively Large Combinational Circuits with an Extended Stepwise Dimension Reduction
    Li, Zhifang
    Luo, Wenjian
    Yue, Lihua
    Wang, Xufa
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, PROCEEDINGS, 2009, : 119 - +
  • [45] A restarted Induced Dimension Reduction method to approximate eigenpairs of large unsymmetric matrices
    Astudillo, R.
    van Gijzen, M. B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 24 - 35
  • [46] Identification of shared components in large ensembles of time series using dimension reduction
    Li, KC
    Shedden, K
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (459) : 759 - 765
  • [47] Using adaptively weighted large margin classifiers for robust sufficient dimension reduction
    Artemiou, Andreas
    STATISTICS, 2019, 53 (05) : 1037 - 1051
  • [49] GENERALIZED DIMENSION DISTORTION UNDER MAPPINGS OF SUB-EXPONENTIALLY INTEGRABLE DISTORTION
    Rajala, Tapio
    Zapadinskaya, Aleksandra
    Zurcher, Thomas
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 553 - 566
  • [50] PLANAR SOBOLEV HOMEOMORPHISMS AND HAUSDORFF DIMENSION DISTORTION
    Rajala, Tapio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) : 1825 - 1829