Randomized large distortion dimension reduction

被引:0
|
作者
Alon Dmitriyuk
Yehoram Gordon
机构
[1] Technion,Department of Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Local theory; Gaussian processes; High dimensional geometry; Convexity; Normed linear spaces; Gaussian operators; Empirical processes; 46B09; 46B07;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a random matrix H:Rn⟶Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H:{\mathbb {R}}^{n}\longrightarrow {\mathbb {R}}^{m}$$\end{document}. Let D≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\ge 2$$\end{document} and let {Wl}l=1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{W_l\}_{l=1}^{p}$$\end{document} be a set of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-dimensional affine subspaces of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}. We ask what is the probability that for all 1≤l≤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le l\le p$$\end{document} and x,y∈Wl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in W_l$$\end{document}, ‖x-y‖2≤‖Hx-Hy‖2≤D‖x-y‖2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert x-y\Vert _2\le \Vert Hx-Hy\Vert _2\le D\Vert x-y\Vert _2. \end{aligned}$$\end{document}We show that for m=O(k+lnplnD)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=O\big (k+\frac{\ln {p}}{\ln {D}}\big )$$\end{document} and a variety of different classes of random matrices H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, which include the class of Gaussian matrices, existence is assured and the probability is very high. The estimate on m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is tight in terms of k,p,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k,p,D$$\end{document}.
引用
收藏
页码:767 / 784
页数:17
相关论文
共 50 条
  • [1] Randomized large distortion dimension reduction
    Dmitriyuk, Alon
    Gordon, Yehoram
    POSITIVITY, 2014, 18 (04) : 767 - 784
  • [2] Dimension reduction regressions with measurement errors subject to additive distortion
    Zhang, Junhua
    Lin, Bingqing
    Zhou, Yan
    Zhang, Jun
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (13) : 2631 - 2649
  • [3] Adaptive Randomized Dimension Reduction on Massive Data
    Darnell, Gregory
    Georgiev, Stoyan
    Mukherjee, Sayan
    Engelhardt, Barbara E.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [4] Universality laws for randomized dimension reduction, with applications
    Oymak, Samet
    Tropp, Joel A.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2018, 7 (03) : 337 - 446
  • [5] Randomized Dimension Reduction for Monte Carlo Simulations
    Kahale, Nabil
    MANAGEMENT SCIENCE, 2020, 66 (03) : 1421 - 1439
  • [6] Adaptive randomized dimension reduction on massive data
    1600, Microtome Publishing (18):
  • [7] Dimension reduction for large-scale networked systems
    Morarescu, Irinel-Constantin
    Postoyan, Romain
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4302 - 4307
  • [8] Dimension Reduction of Large Sparse AND-NOT Network Models
    Veliz-Cuba, Alan
    Aguilar, Boris
    Laubenbacher, Reinhard
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2015, 316 : 83 - 95
  • [9] Large margin dimension reduction for sparse image classification
    Huang, Ke
    Aviyente, Selin
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 773 - 777
  • [10] Dimension Reduction with Randomized Anisotropic Transform for Hyperspectral Image Classification
    Luo, Huiwu
    Yang, Lina
    Yuan, Haoliang
    Tang, Yuan Yan
    2013 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2013,