Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity

被引:0
|
作者
Zhan Zhou
Jian She Yu
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Guangzhou University,Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes
关键词
Homoclinic solution; periodic nonlinear difference equation; superlinear nonlinearity; critical point theory; periodic approximation; 39A11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. The classical Ambrosetti-Rabinowitz superlinear condition is improved by a general superlinear one. The proof is based on the critical point theory in combination with periodic approximations of solutions.
引用
收藏
页码:1809 / 1822
页数:13
相关论文
共 50 条
  • [41] Existence of solutions for periodic elliptic system with general superlinear nonlinearity
    Fangfang Liao
    X. H. Tang
    Jian Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 689 - 701
  • [42] Existence of solutions for periodic elliptic system with general superlinear nonlinearity
    Liao, Fangfang
    Tang, X. H.
    Zhang, Jian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 689 - 701
  • [43] Discrete Schrödinger equations in the nonperiodic and superlinear cases: homoclinic solutions
    Liqian Jia
    Jun Chen
    Guanwei Chen
    Advances in Difference Equations, 2017
  • [44] Homoclinic Orbits of Nonlinear Functional Difference Equations
    Shi, Haiping
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) : 135 - 147
  • [45] Homoclinic Orbits of Nonlinear Functional Difference Equations
    Haiping Shi
    Acta Applicandae Mathematicae, 2009, 106 : 135 - 147
  • [46] Homoclinic Orbits for a Class of Nonlinear Difference Equations
    Shi, H.
    Liu, X.
    Zhang, Y.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2016, 6 (01): : 87 - 102
  • [47] Pairs of solutions of constant sign for nonlinear periodic equations with unbounded nonlinearity
    Hu, SC
    Papageorgiou, NS
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (02) : 193 - 208
  • [48] HOMOCLINIC SOLUTIONS OF DIFFERENCE EQUATIONS WITH VARIABLE EXPONENTS
    Mihailescu, Mihai
    Radulescu, Vicentiu
    Tersian, Stepan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 38 (02) : 277 - 289
  • [49] Periodic solutions for a class of nonlinear differential-difference equations
    Liu Shi-Kuo
    Fu Zun-Tao
    Wang Zhang-Gui
    Liu Shi-Da
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1155 - 1158
  • [50] Periodic solutions in totally nonlinear difference equations with functional delay
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (03): : 7 - 17