A Probabilistic Approximation of the Cauchy Problem Solution for the Schrödinger Equation with a Fractional Derivative Operator

被引:0
|
作者
Platonova M.V. [1 ,2 ]
Tsykin S.V. [2 ]
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, St. Petersburg
[2] St. Petersburg State University, St. Petersburg
关键词
D O I
10.1007/s10958-020-04659-7
中图分类号
学科分类号
摘要
We construct two types of probabilistic approximations of the Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative of order α ∈ (1, 2) at the right-hand side. In the first case, we approximate the solution by mathematical expectation of point Poisson field functionals, and in the second case, we approximate the solution by mathematical expectation of functionals of sums of independent random variables having a power asymptotics of a tail distribution. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:874 / 884
页数:10
相关论文
共 50 条
  • [31] On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
    Yu. P. Chuburin
    Mathematical Notes, 1997, 62 : 648 - 654
  • [32] Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation
    Sen Wang
    Xian-Feng Zhou
    Denghao Pang
    Wei Jiang
    Journal of Applied Mathematics and Computing, 2023, 69 : 4401 - 4424
  • [33] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [34] Life span of blowing-up solutions to the Cauchy problem for a time-fractional Schrödinger equation
    Wang, Sen
    Zhou, Xian-Feng
    Pang, Denghao
    Jiang, Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4401 - 4424
  • [35] Discrete Approximation of Solutions of the Cauchy Problem for a Linear Homogeneous Differential-Operator Equation with a Caputo Fractional Derivative in a Banach Space
    Kokurin M.M.
    Journal of Mathematical Sciences, 2023, 272 (6) : 826 - 852
  • [36] Even non-increasing solution for a Schrödinger type problem with Liouville–Weyl fractional derivative
    César E. Torres Ledesma
    Hernán C. Gutierrez
    Jesús A. Rodríguez
    Ziheng Zhang
    Computational and Applied Mathematics, 2022, 41
  • [37] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [38] The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation
    Yoonjung Lee
    Ihyeok Seo
    Archiv der Mathematik, 2021, 117 : 441 - 453
  • [39] Gradient blow-up of solutions to the Cauchy problem for the Schrödinger equation
    V. Zh. Sakbaev
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 165 - 180
  • [40] On the Riemann–Hilbert problem of a generalized derivative nonlinear Schr?dinger equation
    Bei-Bei Hu
    Ling Zhang
    Tie-Cheng Xia
    Communications in Theoretical Physics, 2021, 73 (01) : 10 - 21