An efficient simulation algorithm on Kripke structures

被引:0
|
作者
Francesco Ranzato
机构
[1] University of Padova,Dipartimento di Matematica
来源
Acta Informatica | 2014年 / 51卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A number of algorithms for computing the simulation preorder (and equivalence) on Kripke structures are available. Let Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} denote the state space, →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rightarrow }$$\end{document} the transition relation and Psim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm {sim}}$$\end{document} the partition of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} induced by simulation equivalence. While some algorithms are designed to reach the best space bounds, whose dominating additive term is |Psim|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|P_{\mathrm {sim}}|^2$$\end{document}, other algorithms are devised to attain the best time complexity O(|Psim||→|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|P_{\mathrm {sim}}||{\rightarrow }|)$$\end{document}. We present a novel simulation algorithm which is both space and time efficient: it runs in O(|Psim|2log|Psim|+|Σ|log|Σ|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|P_ {\mathrm {sim}}|^2 \log |P_{\mathrm {sim}}| + |\varSigma |\log |\varSigma |)$$\end{document} space and O(|Psim||→|log|Σ|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|P_{\mathrm {sim}}||{\rightarrow }|\log |\varSigma |)$$\end{document} time. Our simulation algorithm thus reaches the best space bounds while closely approaching the best time complexity.
引用
收藏
页码:107 / 125
页数:18
相关论文
共 50 条
  • [21] On the Verification of Weighted Kripke Structures Under Uncertainty
    Bacci, Giovanni
    Hansen, Mikkel
    Larsen, Kim Guldstrand
    QUANTITATIVE EVALUATION OF SYSTEMS, QEST 2018, 2018, 11024 : 71 - 86
  • [22] An efficient multi-domain spectral algorithm for the simulation of dispersive metallic structures in the time domain
    Pernice, Wolfram Hans Peter
    Payne, Frank P.
    Gallagher, Dominic F. G.
    OPTICAL AND QUANTUM ELECTRONICS, 2007, 39 (10-11) : 877 - 889
  • [23] Efficient simulation algorithm for the full vectorial wave propagation in the polarisation dependent structures of integrated optics
    Kunz, A
    Sumichrast, L
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1995, 14 (04) : 181 - 185
  • [24] An efficient multi-domain spectral algorithm for the simulation of dispersive metallic structures in the time domain
    Wolfram Hans Peter Pernice
    Frank P. Payne
    Dominic F. G. Gallagher
    Optical and Quantum Electronics, 2007, 39 : 877 - 889
  • [25] Efficient algorithm for simulation of isoelectric focusing
    Yoo, Kisoo
    Shim, Jaesool
    Liu, Jin
    Dutta, Prashanta
    ELECTROPHORESIS, 2014, 35 (05) : 638 - 645
  • [26] A new efficient simulation equivalence algorithm
    Ranzato, Francesco
    Tapparo, Francesco
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 171 - +
  • [27] SIMULATION OF PROPYLENE POLYMERIZATION - AN EFFICIENT ALGORITHM
    SARKAR, P
    GUPTA, SK
    POLYMER, 1992, 33 (07) : 1477 - 1485
  • [28] Bounded model checking for partial Kripke structures
    Wehrheim, Heike
    THEORETICAL ASPECTS OF COMPUTING - ICTAC 2008, PROCEEDINGS, 2008, 5160 : 380 - +
  • [29] CHARACTERIZING FINITE KRIPKE STRUCTURES IN PROPOSITIONAL TEMPORAL LOGIC
    BROWNE, MC
    CLARKE, EM
    GRUMBERG, O
    THEORETICAL COMPUTER SCIENCE, 1988, 59 (1-2) : 115 - 131
  • [30] CMPZ -: an algorithm for the efficient comparison of periodic structures
    Hundt, R
    Schön, JC
    Jansen, M
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 : 6 - 16