Centralizers of Lie Structure of Triangular Algebras

被引:0
|
作者
B. Fadaee
A. Fošner
H. Ghahramani
机构
[1] University of Kurdistan,Department of Mathematics
[2] University of Primorska,Faculty of Management
来源
Results in Mathematics | 2022年 / 77卷
关键词
Lie centralizer; lie derivation; generalized Lie 2-derivation; triangular algebra; 16W25; 47B47; 17B60; 15A78; 47L35;
D O I
暂无
中图分类号
学科分类号
摘要
Let T=Tri(A,M,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}} = Tri ({\mathcal {A}},{\mathcal {M}},{\mathcal {B}} ) $$\end{document} be a triangular algebra where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document} is a unital algebra, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document} is an algebra which is not necessarily unital, and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {M}} $$\end{document} is a faithful (A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document})-bimodule which is unital as a left A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}-module. In this paper, under some mild conditions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}, we show that if ϕ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi : {\mathcal {T}} \rightarrow {\mathcal {T}} $$\end{document} is a linear map satisfying A,B∈T,AB=P⟹ϕ([A,B])=[A,ϕ(B)]=[ϕ(A),B],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A,B \in {\mathcal {T}}, ~~ AB= P \Longrightarrow \phi ( [A,B])=[A,\phi (B) ]=[\phi (A) , B], \end{aligned}$$\end{document}where P is the standard idempotent of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, then ϕ=ψ+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi = \psi +\gamma $$\end{document} where ψ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi :{\mathcal {T}} \rightarrow {\mathcal {T}}$$\end{document} is a centralizer and γ:T→Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma :{\mathcal {T}}\rightarrow Z( {\mathcal {T}}) $$\end{document} is a linear map vanishing at commutators [A, B] with AB=P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ AB=P $$\end{document} whrere Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z( {\mathcal {T}}) $$\end{document} is the center of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}. Applying our result, we characterize linear maps on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} that behave like generalized Lie 2-derivations at idempotent products as an application of above result. Our results are applied to upper triangular matrix algebras and nest algebras.
引用
收藏
相关论文
共 50 条
  • [21] The index of centralizers of elements in classical Lie algebras
    Yakimova, OS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (01) : 42 - 51
  • [22] Characterizations of Lie centralizers of generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1656 - 1671
  • [23] ON LIE TRIPLE CENTRALIZERS OF VON NEUMANN ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    OPERATORS AND MATRICES, 2024, 18 (03): : 559 - 570
  • [24] LIE TRIPLE CENTRALIZERS ON GENERALIZED MATRIX ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    Jing, Wu
    QUAESTIONES MATHEMATICAE, 2023, 46 (02) : 281 - 300
  • [25] The index of centralizers of elements in classical Lie algebras
    O. S. Yakimova
    Functional Analysis and Its Applications, 2006, 40 : 42 - 51
  • [26] Nonlinear Lie Centralizers on Rings and Operator Algebras
    Zhang, Fangjuan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (04): : 107 - 116
  • [27] On nonlinear Lie centralizers of generalized matrix algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2693 - 2705
  • [28] Lie derivations of triangular algebras
    Cheung, WS
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 299 - 310
  • [29] Lie σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2966 - 2983
  • [30] Invariants of triangular Lie algebras
    Boyko, Vyacheslav
    Patera, Jiri
    Popovych, Roman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7557 - 7572