Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

被引:0
|
作者
Marian Weiss
Johannes Patrick Frohnmayer
Lucia Theresa Benk
Barbara Haller
Jan-Willi Janiesch
Thomas Heitkamp
Michael Börsch
Rafael B. Lira
Rumiana Dimova
Reinhard Lipowsky
Eberhard Bodenschatz
Jean-Christophe Baret
Tanja Vidakovic-Koch
Kai Sundmacher
Ilia Platzman
Joachim P. Spatz
机构
[1] Max Planck Institute for Medical Research,Department of Cellular Biophysics
[2] University of Heidelberg,Department of Biophysical Chemistry
[3] Single-Molecule Microscopy Group,undefined
[4] Jena University Hospital,undefined
[5] Friedrich Schiller University Jena,undefined
[6] Theory & Bio-Systems,undefined
[7] Max Planck Institute of Colloids and Interfaces,undefined
[8] Laboratory for Fluid Dynamics,undefined
[9] Pattern Formation and Biocomplexity,undefined
[10] Max Planck Institute for Dynamics and Self-Organization,undefined
[11] Droplets,undefined
[12] Membranes and Interfaces,undefined
[13] Max Planck Institute for Dynamics and Self-Organization,undefined
[14] Soft Micro Systems,undefined
[15] CNRS,undefined
[16] Univ. Bordeaux,undefined
[17] CRPP,undefined
[18] Process System Engineering,undefined
[19] Max Planck Institute for Dynamics of Complex Technical Systems,undefined
[20] Otto-von-Guericke University Magdeburg,undefined
[21] Process Systems Engineering,undefined
[22] Universitätsplatz 2,undefined
关键词
D O I
10.1038/nmat5005
中图分类号
学科分类号
摘要
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed ‘droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
引用
收藏
页码:89 / 96
页数:7
相关论文
共 50 条
  • [11] Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles
    Staufer, Oskar
    Dietrich, Franziska
    Rimal, Rahul
    Schroeter, Martin
    Fabritz, Sebastian
    Boehm, Heike
    Singh, Smriti
    Moeller, Martin
    Platzman, Ilia
    Spatz, Joachim Pius
    SCIENCE ADVANCES, 2021, 7 (36)
  • [13] Bottom-Up Assembly of Micro/Nanostructures
    Mastrangeli, Massimo
    Perego, Michele
    ADVANCED MATERIALS INTERFACES, 2020, 7 (05)
  • [14] Bottom-up construction of a synthetic carboxysome
    Mantri, Shiksha
    Frey, Raphael
    Rocca, Marco
    Sasaki, Eita
    Hilvert, Donald
    PROTEIN SCIENCE, 2015, 24 : 190 - 191
  • [15] Bottom-up assembly of metallic germanium
    Giordano Scappucci
    Wolfgang M. Klesse
    LaReine A. Yeoh
    Damien J. Carter
    Oliver Warschkow
    Nigel A. Marks
    David L. Jaeger
    Giovanni Capellini
    Michelle Y. Simmons
    Alexander R. Hamilton
    Scientific Reports, 5
  • [16] Synthetic Immunology-Building Immunity from the Bottom-Up with Synthetic Cells
    Staufer, Oskar
    ADVANCED NANOBIOMED RESEARCH, 2024, 4 (09):
  • [17] Bottom-up assembly of metallic germanium
    Scappucci, Giordano
    Klesse, Wolfgang M.
    Yeoh, LaReine A.
    Carter, Damien J.
    Warschkow, Oliver
    Marks, Nigel A.
    Jaeger, David L.
    Capellini, Giovanni
    Simmons, Michelle Y.
    Hamilton, Alexander R.
    SCIENTIFIC REPORTS, 2015, 5
  • [18] Bottom-up Assembly of the Phytochrome Network
    Sanchez-Lamas, Maximiliano
    Lorenzo, Christian D.
    Cerdan, Pablo D.
    PLOS GENETICS, 2016, 12 (11):
  • [19] Bottom-up assembly of nanocellulose structures
    Niinivaara, Elina
    Cranston, Emily D.
    CARBOHYDRATE POLYMERS, 2020, 247
  • [20] Bottom-up assembly of photonic crystals
    von Freymann, Georg
    Kitaev, Vladimir
    Lotschz, Bettina V.
    Ozin, Geoffrey A.
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) : 2528 - 2554