Non-Linear Binding and the Diffusion–Migration Test

被引:1
|
作者
Olivier Coussy
Robert Eymard
机构
[1] UMR113,Laboratoire des Matériaux et des Structures du Génie Civil
[2] LCPC/ENPC/CNRS,Laboratoire d'Etude des Transferts d'Energie et de Matière
[3] Université de Marne la Vallée,undefined
来源
Transport in Porous Media | 2003年 / 53卷
关键词
non-linear binding; diffusion–migration test; time-lag; penetration front; Freundlich isotherm; travelling wave;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the non-linear binding effects upon the diffusion–migration test. For the diffusion test we derive the conditions required for the non-linear binding isotherm to produce an actual penetration front. When more than two ion species are present we show that the diffusion coefficient associated with a particular ion cannot be extracted from the diffusion test on account of multi-species electrical effects. In the migration test where an external electrical field is applied to the sample, we give the conditions required for the propagation of a stable ‘travelling wave’. In addition new explicit expressions of the time-lag are obtained for both tests, allowing the determination of the properties of the unknown binding isotherm whatever its physical nature. Throughout the paper the results and the method are illustrated by the diffusion of the Cl− ion within cement-based materials, using experimental data extracted from literature. The theoretical predictions compare well to these experimental data.
引用
收藏
页码:51 / 74
页数:23
相关论文
共 50 条
  • [31] Contour simplification using non-linear diffusion
    Pinheiro, AMG
    Ghanbari, M
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 673 - 676
  • [32] NON-LINEAR DIFFUSION IN BIOLOGICAL-SYSTEMS
    LIN, SH
    BULLETIN OF MATHEMATICAL BIOLOGY, 1979, 41 (02) : 151 - 162
  • [33] INTEGRAL SOLUTION TO A NON-LINEAR DIFFUSION PROBLEM
    HUSSAINI, MY
    DEVASIA, KJ
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1978, 13 (01) : 119 - 123
  • [34] SIMILARITY SOLUTIONS OF A NON-LINEAR DIFFUSION EQUATION
    SMITH, R
    IMA JOURNAL OF APPLIED MATHEMATICS, 1982, 28 (02) : 149 - 160
  • [35] SOME SOLUTIONS OF A NON-LINEAR DIFFUSION PROBLEM
    SUZUKI, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1979, 12 (05) : 400 - 403
  • [36] NON-LINEAR CLASSICAL DIFFUSION IN A CONTAINED PLASMA
    LOW, BC
    PHYSICS OF FLUIDS, 1982, 25 (02) : 402 - 407
  • [37] Adaptive Non-linear Diffusion in Wavelet Domain
    Mandava, Ajay K.
    Regentova, Emma E.
    IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT I, 2011, 6753 : 58 - 68
  • [38] Laplacian based non-linear diffusion filtering
    Nishiguchi, Haruhiko
    Imiya, Atsushi
    Sakai, Tomoya
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 838 - +
  • [39] PREFACE: DIFFUSION ON FRACTALS AND NON-LINEAR DYNAMICS
    Falk, Kurt
    Kesseboehmer, Marc
    Oertel-Jaeger, Tobias Henrik
    Rademacher, Jens D. M.
    Samuel, Tony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (02): : I - IV
  • [40] A POPULATION-MODEL WITH NON-LINEAR DIFFUSION
    MACCAMY, RC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (01) : 52 - 72