Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review

被引:0
|
作者
Sadam Hussain
Yareth Lafarga-Osuna
Mansoor Ali
Usman Naseem
Masroor Ahmed
Jose Gerardo Tamez-Peña
机构
[1] Tecnológico de Monterrey,School of Engineering and Sciences
[2] James Cook University,College of Science and Engineering
[3] Tecnológico de Monterrey,School of Medicine and Health Sciences
来源
关键词
Deep learning; Radiomics; Radiogenomics; Digital breast tomosynthesis; Breast cancer; Lesion detection; Lesion classification; Medical imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Adaptation of a deep learning malignancy model from full-field digital mammography to digital breast tomosynthesis
    Singh, Sadanand
    Matthews, Thomas Paul
    Shah, Meet
    Mombourquette, Brent
    Tsue, Trevor
    Long, Aaron
    Almohsen, Ranya
    Pedemonte, Stefano
    Su, Jason
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [42] Deep Learning-Based Model Observer for Image Quality Evaluation of Digital Breast Tomosynthesis
    Choi, S.
    Choi, S.
    Kim, H.
    MEDICAL PHYSICS, 2020, 47 (06) : E524 - E524
  • [43] Performance of Digital Breast Tomosynthesis, Synthetic Mammography, and Digital Mammography in Breast Cancer Screening: A Systematic Review and Meta-Analysis
    Alabousi, Mostafa
    Wadera, Akshay
    Al-Ghita, Mohammed Kashif
    Al-Ghetaa, Rayeh Kashef
    Salameh, Jean-Paul
    Pozdnyakov, Alex
    Zha, Nanxi
    Samoilov, Lucy
    Sharifabadi, Anahita Dehmoobad
    Sadeghirad, Behnam
    Freitas, Vivianne
    McInnes, Matthew D. F.
    Alabousi, Abdullah
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (06): : 680 - 690
  • [44] Denoising digital breast tomosynthesis projections using deep learning with synthetic data as training set
    de Araujo, Darlan M. N.
    Salvadeo, Denis H. P.
    de Paula, Davi D.
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (03)
  • [45] Deep learning model observer for 4-alternative forced choice in digital breast tomosynthesis
    Choi, Seungyeon
    Choi, Sunghoon
    Choi, Young-Wook
    Kim, Hee-Joung
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [46] Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review
    Farook, Taseef Hasan
    Dudley, James
    JOURNAL OF ORAL REHABILITATION, 2023, 50 (06) : 501 - 521
  • [47] Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis
    Oba, Ken
    Adachi, Maki
    Kobayashi, Tomoya
    Takaya, Eichi
    Shimokawa, Daiki
    Fukuda, Toshinori
    Takahashi, Kengo
    Yagishita, Kazuyo
    Ueda, Takuya
    Tsunoda, Hiroko
    BREAST CANCER, 2024,
  • [48] Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis:A Systematic Review and Meta-Analysis
    Yoon, Jung Hyun
    Strand, Fredrik
    Baltzer, Pascal A. T.
    Conant, Emily F.
    Gilbert, Fiona J.
    Lehman, Constance D.
    Morris, Elizabeth A.
    Mullen, Lisa A.
    Nishikawa, Robert M.
    Sharma, Nisha
    Vejborg, Ilse
    Moy, Linda
    Mann, Ritse M.
    RADIOLOGY, 2023, 307 (05)
  • [49] Pectoral muscle segmentation in breast tomosynthesis with deep learning
    Rodriguez-Ruiz, Alejandro
    Teuwen, Jonas
    Chung, Kaman
    Karssemeijer, Nico
    Chevalier, Margarita
    Gubern-Merida, Albert
    Sechopoulos, Ioannis
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [50] Deep learning systems for reading mammograms and breast tomosynthesis
    Karssemeijer, N.
    CANCER RESEARCH, 2019, 79 (04)