Sharp Weak Type Estimates for a Family of Soria Bases

被引:0
|
作者
Dmitry Dmitrishin
Paul Hagelstein
Alex Stokolos
机构
[1] Odessa National Polytechnic University,Department of Applied Mathematics
[2] Baylor University,Department of Mathematics
[3] Georgia Southern University,Department of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Maximal functions; Differentiation basis; Weak type inequalities; Covering lemmas; Primary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} be a collection of rectangular parallelepipeds in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} whose sides are parallel to the coordinate axes and such that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} contains parallelepipeds with side lengths of the form s,2Ns,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, \frac{2^N}{s} , t $$\end{document}, where s,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, t > 0$$\end{document} and N lies in a nonempty subset S of the natural numbers. We show that if S is an infinite set, then the associated geometric maximal operator MB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\mathcal {B}}$$\end{document} satisfies the weak type estimate x∈R3:MBf(x)>α≤C∫R3|f|α1+log+|f|α2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in {\mathbb {R}}^3 : M_{{\mathcal {B}}}f(x) > \alpha \right\} \right| \le C \int \nolimits _{{\mathbb {R}}^3} \frac{|f|}{\alpha } \left( 1 + \log ^+ \frac{|f|}{\alpha }\right) ^{2}, \end{aligned}$$\end{document}but does not satisfy an estimate of the form x∈R3:MBf(x)>α≤C∫R3ϕ|f|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in {\mathbb {R}}^3 : M_{{\mathcal {B}}}f(x) > \alpha \right\} \right| \le C \int \nolimits _{{\mathbb {R}}^3} \phi \left( \frac{|f|}{\alpha }\right) \end{aligned}$$\end{document}for any convex increasing function ϕ:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : \mathbb [0, \infty ) \rightarrow [0, \infty )$$\end{document} satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{x \rightarrow \infty }\frac{\phi (x)}{x (\log (1 + x))^2} = 0\;. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] Weak type estimates for commutators on Herz-type spaces
    Komori, Y
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 449 - 460
  • [32] Sharp weighted weak type (∞, ∞) inequality for differentially subordinate martingales
    Brzozowski, Michal
    Osekowski, Adam
    STATISTICS & PROBABILITY LETTERS, 2019, 155
  • [33] Sharp bases and mappings
    Mou, L
    Ohta, H
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 227 - 238
  • [34] SHARP ESTIMATES IN SOME INEQUALITIES OF ZYGMUND TYPE FOR RIESZ TRANSFORMS
    Aarao, Jorge
    O'Neill, Michael D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4227 - 4233
  • [35] On sharp bilinear Strichartz estimates of Ozawa-Tsutsumi type
    Bennett, Jonathan
    Bez, Neal
    Jeavons, Chris
    Pattakos, Nikolaos
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (02) : 459 - 476
  • [36] Sharp weak-type inequalities for differentially subordinated martingales
    Osekowski, Adam
    BERNOULLI, 2009, 15 (03) : 871 - 897
  • [37] Sharp estimates for commutators of bilinear operators on Morrey type spaces
    Wang, Dinghuai
    Zhou, Jiang
    Teng, Zhidong
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (01) : 165 - 199
  • [38] Sharp estimates for partial derivative on convex domains of finite type
    Cumenge, A
    ARKIV FOR MATEMATIK, 2001, 39 (01): : 1 - 25
  • [39] Sharp estimates for hyperbolic metrics and covering theorems of Landau type
    Baernstein, A
    Eremenko, A
    Fryntov, A
    Solynin, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (01) : 113 - 133
  • [40] Weak Sharp Type Solutions for Some Variational Integral Inequalities
    Treanta, Savin
    Saeed, Tareq
    AXIOMS, 2024, 13 (04)