Grid-enabling medical image analysis

被引:22
|
作者
Germain-Renaud C. [1 ,2 ]
Breton V. [2 ]
Clarysse P. [3 ]
Gaudeau Y. [4 ]
Glatard T. [5 ]
Jeannot E. [6 ]
Legré Y. [2 ]
Loomis C. [7 ]
Magnin I. [3 ]
Montagnat J. [5 ]
Moureaux J.-M. [4 ]
Osorio A. [9 ]
Pennec X. [8 ]
Texier R. [1 ]
机构
[1] Laboratoire de Recherche en Informatique, CNRS, Université Paris-Sud, Paris
[2] Laboratoire de Physique Corpusculaire, CNRS, Clermont-Ferrand
[3] CREATIS - CNRS, INSA, INSERM, Lyon
[4] Centre de Recherche en Automatique de Nancy - CNRS, INPL, Université de Nancy, Nancy
[5] Laboratoire Informatique Signaux et Systèmes, CNRS, Université de Nice, Nice
[6] Laboratoire Lorrain de Recherche en Informatique et Ses Applications - CNRS, INRIA, Université de Nancy, Nancy
[7] Laboratoire de l'Accélérateur Linéaire, CNRS, Université Paris-Sud, Paris
[8] Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, CNRS, Orsay
[9] INRIA Sophia-Antipolis, Sophia-Antipolis
关键词
Grid computing; Medical image analysis;
D O I
10.1007/s10877-005-0679-9
中图分类号
学科分类号
摘要
Grids have emerged as a promising technology to handle the data and compute intensive requirements of many application areas. Digital medical image processing is a promising application area for grids. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. The research project AGIR (Grid Analysis of Radiological Data) presented in this paper addresses this challenge through a combined approach: on one hand, leveraging the grid middleware through core grid medical services which target the requirements of medical data processing applications; on the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical applications. © Springer Science + Business Media, Inc. 2005.
引用
收藏
页码:339 / 349
页数:10
相关论文
共 50 条
  • [31] Enabling the Big Data Analysis in the Smart Grid
    Luo, Fengji
    Dong, Zhao Yang
    Zhao, Junhua
    Zhang, Xin
    Kong, Weicong
    Chen, Yingying
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [32] Analysis of grid performance using an Optical Flow algorithm for Medical Image processing
    Moreno, Ramon A.
    Porfirio Cunha, Rita de Cassio
    Gutierrez, Marco A.
    MEDICAL IMAGING 2014: PACS AND IMAGING INFORMATICS: NEXT GENERATION AND INNOVATIONS, 2014, 9039
  • [33] Towards a grid system for medical image reconstruction
    Schellmann, Maraike
    Boehm, Dominik
    Wichmann, Stefan
    Gorlatch, Sergei
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 3019 - 3025
  • [34] Grid computing in image analysis
    Kayser, Klaus
    Goertler, Juergen
    Borkenfeld, Stephan
    Kayser, Gian
    DIAGNOSTIC PATHOLOGY, 2011, 6
  • [35] Image analysis by counting on a grid
    Perina, Alessandro
    Jojic, Nebojsa
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [36] Grid computing in image analysis
    Klaus Kayser
    Jürgen Görtler
    Stephan Borkenfeld
    Gian Kayser
    Diagnostic Pathology, 6
  • [37] Enabling better medical image classification through secure collaboration
    Vaidya, Jaideep
    Tupule, Bhakti
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2157 - +
  • [38] Content and Semantic Context based Image Retrieval for Medical Image Grid
    Jin, Hai
    Sun, Aobing
    Zheng, Ran
    He, Ruhan
    Zhang, Qin
    Shi, Yingjie
    Yang, Wen
    2007 8TH IEEE/ACM INTERNATIONAL CONFERENCE ON GRID COMPUTING, 2007, : 289 - 296
  • [39] Multi-Grid Transformation for Medical Image Registration
    Visutsak, Porawat
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2014, : 327 - 331
  • [40] Enabling the Smart Grid
    Wotruba, Bill
    POWER ENGINEERING, 2010, 114 (05) : 52 - +