Bowen entropy for actions of amenable groups

被引:1
|
作者
Dongmei Zheng
Ercai Chen
机构
[1] School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University,Department of Applied Mathematics
[2] College of Science Nanjing Tech University,undefined
[3] School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bowen introduced a definition of topological entropy of subset inspired by Hausdorff dimension in 1973 [1]. In this paper we consider the Bowen entropy for amenable group action dynamical systems and show that, under the tempered condition, the Bowen entropy of the whole compact space for a given Følner sequence equals the topological entropy. For the proof of this result, we establish a variational principle related to the Bowen entropy and the Brin–Katok local entropy formula for dynamical systems with amenable group actions.
引用
收藏
页码:895 / 911
页数:16
相关论文
共 50 条
  • [31] Ergodic amenable actions of algebraic groups
    Raja, CRE
    GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 97 - 100
  • [32] FINITE UNIFORM GENERATORS FOR ERGODIC, FINITE ENTROPY, FREE ACTIONS OF AMENABLE-GROUPS
    ROSENTHAL, A
    PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (02) : 147 - 166
  • [33] Approximation properties and entropy estimates for crossed products by actions of amenable discrete quantum groups
    Skalski, Adam
    Zacharias, Joachim
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 184 - 202
  • [34] AMENABLE ACTIONS OF DISCRETE-GROUPS
    ELLIOTT, GA
    GIORDANO, T
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 289 - 318
  • [35] Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions
    Choda, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 181 - 191
  • [36] Folner tilings for actions of amenable groups
    Conley, Clinton T.
    Jackson, Steve C.
    Kerr, David
    Marks, Andrew S.
    Seward, Brandon
    Tucker-Drob, Robin D.
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 663 - 683
  • [37] Scaled packing entropy for amenable group actions
    Hu Chen
    Zhiming Li
    Banach Journal of Mathematical Analysis, 2023, 17
  • [38] Packing topological entropy for amenable group actions
    Dou, Dou
    Zheng, Dongmei
    Zhou, Xiaomin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (02) : 480 - 514
  • [39] Scaled packing entropy for amenable group actions
    Chen, Hu
    Li, Zhiming
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [40] TOPOLOGICAL CONDITIONAL ENTROPY FOR AMENABLE GROUP ACTIONS
    Zhou, Xiaoyao
    Zhang, Yaqing
    Chen, Ercai
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 141 - 150