Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque

被引:0
|
作者
Yutaro Takeuchi
Yuta Yamane
Ju-Young Yoon
Ryuichi Itoh
Butsurin Jinnai
Shun Kanai
Jun’ichi Ieda
Shunsuke Fukami
Hideo Ohno
机构
[1] Tohoku University,Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication
[2] Tohoku University,WPI
[3] Tohoku University,Advanced Institute for Materials Research
[4] Tohoku University,Frontier Research Institute for Interdisciplinary Sciences
[5] Tohoku University,Center for Spintronics Research Network
[6] Tohoku University,Division for the Establishment of Frontier Sciences
[7] Advanced Science Research Center,Center for Science and Innovation in Spintronics
[8] Japan Atomic Energy Agency,Center for Innovative Integrated Electronic Systems
[9] Tohoku University,undefined
来源
Nature Materials | 2021年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electrical manipulation of magnetic materials by current-induced spin torque constitutes the basis of spintronics. Here, we show an unconventional response to spin–orbit torque of a non-collinear antiferromagnet Mn3Sn, which has attracted attention owing to its large anomalous Hall effect despite a vanishingly small net magnetization. In epitaxial heavy-metal/Mn3Sn heterostructures, we observe a characteristic fluctuation of the Hall resistance under the application of electric current. This observation is explained by a rotation of the chiral-spin structure of Mn3Sn driven by spin–orbit torque. We find that the variation of the magnitude of anomalous Hall effect fluctuation with sample size correlates with the number of magnetic domains in the Mn3Sn layer. In addition, the dependence of the critical current on Mn3Sn layer thickness reveals that spin–orbit torque generated by small current densities, below 20 MA cm−2, effectively acts on the chiral-spin structure even in Mn3Sn layers that are thicker than 20 nm. The results provide additional pathways for electrical manipulation of magnetic materials.
引用
收藏
页码:1364 / 1370
页数:6
相关论文
共 50 条
  • [31] Spin-orbit torque in a completely compensated synthetic antiferromagnet
    Zhang, P. X.
    Liao, L. Y.
    Shi, G. Y.
    Zhang, R. Q.
    Wu, H. Q.
    Wang, Y. Y.
    Pan, F.
    Song, C.
    PHYSICAL REVIEW B, 2018, 97 (21)
  • [32] Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets
    Fujita, Hiroyuki
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (04):
  • [33] Magnetic dynamics of strained non-collinear antiferromagnet
    He, Zhiping
    Liu, Luqiao
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (09)
  • [34] Vector spin Seebeck effect and spin swapping effect in antiferromagnetic insulators with non-collinear spin structure
    Xu, Jinsong
    Lin, Weiwei
    He, Jiaming
    Zhou, J. -S
    Qu, Danru
    Huang, Ssu-Yen
    Chien, C. L.
    APL MATERIALS, 2023, 11 (09)
  • [35] Non-collinear spin structures in CeH2/Fe
    Lohstroh, W
    Schulte, O
    Klose, F
    Munzenberg, M
    Felsch, W
    Maletta, H
    Lauter, H
    PHYSICA B, 1997, 234 : 477 - 479
  • [36] Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet (vol 565, pg 627, 2019)
    Kimata, Motoi
    Chen, Hua
    Kondou, Kouta
    Sugimoto, Satoshi
    Muduli, Prasanta K.
    Ikhlas, Muhammad
    Omori, Yasutomo
    Tomita, Takahiro
    MacDonald, Allan. H.
    Nakatsuji, Satoru
    Otani, Yoshichika
    NATURE, 2019, 566 (7742) : E4 - E4
  • [37] Spin and charge transport through non-collinear magnetic nanowires
    Sedlmayr, N.
    Dugaev, V. K.
    Berakdar, J.
    Vieira, V. R.
    Araujo, M. A. N.
    Barnas, J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (9-12) : 1419 - 1421
  • [38] Multicritical behavior in frustrated spin systems with non-collinear order
    Calabrese, P
    Pelissetto, A
    Vicari, E
    NUCLEAR PHYSICS B, 2005, 709 (03) : 550 - 577
  • [39] Investigation of non-collinear spin states with scanning tunneling microscopy
    Wulfhekel, W.
    Gao, C. L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (08)
  • [40] Controlling spin current polarization through non-collinear antiferromagnetism
    Nan, T.
    Quintela, C. X.
    Irwin, J.
    Gurung, G.
    Shao, D. F.
    Gibbons, J.
    Campbell, N.
    Song, K.
    Choi, S. -Y.
    Guo, L.
    Johnson, R. D.
    Manuel, P.
    Chopdekar, R. V.
    Hallsteinsen, I.
    Tybell, T.
    Ryan, P. J.
    Kim, J. -W.
    Choi, Y.
    Radaelli, P. G.
    Ralph, D. C.
    Tsymbal, E. Y.
    Rzchowski, M. S.
    Eom, C. B.
    NATURE COMMUNICATIONS, 2020, 11 (01)