The Dirichlet ring and unconditional bases in L2[0, 2π]

被引:0
|
作者
Artur Sowa
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
关键词
unconditional basis; Riesz basis; fast transform; Dirichlet series;
D O I
暂无
中图分类号
学科分类号
摘要
It is observed that the Dirichlet ring admits a representation in an infinite-dimensional matrix algebra. The resulting matrices are subsequently used in the construction of nonorthogonal Riesz bases in a separable Hilbert space. This framework enables custom design of a plethora of bases with interesting features. Remarkably, the representation of signals in any one of these bases is numerically implementable via fast algorithms.
引用
收藏
页码:227 / 232
页数:5
相关论文
共 50 条
  • [21] Uniqueness of unconditional basis of lp(c0) and lp(l2), 0<p<1
    Albiac, F
    Leránoz, C
    STUDIA MATHEMATICA, 2002, 150 (01) : 35 - 52
  • [22] COMPLEMENTED SUBSPACES OF (L2 AND L2 AND )P(1 LESS THAN P LESS THAN INFINITY) WITH AN UNCONDITIONAL BASIS
    SCHECHTMAN, G
    ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) : 351 - 358
  • [23] Global exact controllability on H1Γ0 (Ω) x L2 (Ω) of semilinear wave equations with Neumann L2(0, T; L2 (Γ))-boundary control
    Triggiani, R
    CONTROL THEORY OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 242 : 273 - 336
  • [24] ON A COMPLETE SYSTEM IN L2(0,+INFINITY)
    RUSEV, P
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1990, 43 (01): : 13 - 14
  • [25] SETS DENSE IN L2(0, 1)
    HIRSCHMA.II
    WEISS, G
    LASHER, S
    WILLIAMS, JP
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09): : 1034 - &
  • [26] Riesz Bases in Subspaces of L2 (R+ )
    T. N. T. Goodman
    C. A. Micchelli
    Z. Shen
    Constructive Approximation, 2001, 17 : 39 - 46
  • [27] Orthogonal Bases of Exponential Functions for L2(μ) on Rd
    An, Li-Xiang
    He, Xing-Gang
    Li, Qian
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [29] Exponential Riesz Bases in L2 on Two Intervals
    Belov, Yurii
    Mironov, Mikhail
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (07) : 5403 - 5433
  • [30] Riesz bases in subspaces of L2(R+)
    Goodman, TNT
    Micchelli, CA
    Shen, Z
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 39 - 46