Formulation of a triangular finite element with an embedded interface via isoparametric mapping

被引:0
|
作者
G. Bolzon
机构
[1] Department of Structural Engineering,
[2] Politecnico di Milano,undefined
[3] Piazza Leonardo da Vinci 32,undefined
[4] 20133 Milano,undefined
[5] Italy e-mail: gabriella.bolzon@polimi.it,undefined
来源
Computational Mechanics | 2001年 / 27卷
关键词
Rigid Body; Propagation Process; Body Motion; Linear Interpolation; Mechanical Problem;
D O I
暂无
中图分类号
学科分类号
摘要
 This paper presents the formulation of a triangular finite element with an embedded interface, designed for the simulation of discrete crack propagation processes. The element is developed within a displacement-based framework. Linear interpolation of the displacement discontinuities along the internal interface is assumed in order to ensure compatibility across inter-element boundaries. The proper representation of the rigid body motions and the solvability of the discretised version of the mechanical problem in point are specifically addressed. Finally, the element performance is illustrated through comparison with some alternative proposals.
引用
收藏
页码:463 / 473
页数:10
相关论文
共 50 条
  • [41] The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements
    Dalik, Josef
    APPLICATIONS OF MATHEMATICS, 2012, 57 (05) : 445 - 462
  • [42] Analysis of an efficient finite element method for embedded interface problems
    Harari, Isaac
    Dolbow, John
    COMPUTATIONAL MECHANICS, 2010, 46 (01) : 205 - 211
  • [43] Analysis of an efficient finite element method for embedded interface problems
    Isaac Harari
    John Dolbow
    Computational Mechanics, 2010, 46 : 205 - 211
  • [44] A general degree semihybrid triangular compatible finite element formulation for Kirchhoff plates
    Moitinho de Almeida, J. P.
    Maunder, E. A. W.
    Tiago, Carlos
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (01) : 56 - 85
  • [45] Refined geometrically nonlinear formulation of a thin-shell triangular finite element
    Kuznetsov, V. V.
    Levyakov, S. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (05) : 755 - 765
  • [46] Geometric dichotomy method for inverse isoparametric mapping in linear finite element and its correction measure
    Bao, Jin-Qing
    Yang, Qiang
    Guan, Fu-Hai
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2010, 27 (05): : 770 - 774
  • [47] A formulation of membrane finite elements with true drilling rotation The compatible triangular element
    Boutagouga, Djamel
    ENGINEERING COMPUTATIONS, 2020, 37 (01) : 203 - 236
  • [48] Refined geometrically nonlinear formulation of a thin-shell triangular finite element
    V. V. Kuznetsov
    S. V. Levyakov
    Journal of Applied Mechanics and Technical Physics, 2007, 48 : 755 - 765
  • [49] Embedded Finite Element formulation for fluid flow in fractured porous medium
    Cavalcanti, Danilo
    Mejia, Cristian
    Roehl, Deane
    de-Pouplana, Ignasi
    Casas, Guillermo
    Martha, Luiz F.
    COMPUTERS AND GEOTECHNICS, 2024, 171
  • [50] A single crystal plasticity finite element formulation with embedded deformation twins
    Jin, Tao
    Mourad, Hashem M.
    Bronkhorst, Curt A.
    Beyerlein, Irene J.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 133