Schottky nanocontact on single crystalline ZnO nanorod using conductive atomic force microscopy

被引:0
|
作者
S. K. Panda
S. B. Sant
C. Jacob
Hyunjung Shin
机构
[1] Indian Institute of Technology,Materials Science Centre
[2] Indian Institute of Technology,Department of Metallurgical and Materials Engineering
[3] Sungkyunkwan University,Department of Energy Science
来源
关键词
ZnO; Nanorods; Conducting atomic force microscopy; Nanoscale Schottky contact; TEM; Photoluminescence;
D O I
暂无
中图分类号
学科分类号
摘要
This article reports the formation of Schottky nanocontacts on single crystalline ZnO nanorods (NR) using atomic force microscopy (AFM) with a PtIr-coated Si cantilever in a contact mode. ZnO NRs were synthesized by thermal evaporation of metallic zinc thin film followed by annealing. The NRs are [112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{2} $$\end{document}0] directed (i.e., along a-axis) which is quite unusual for wurtzite ZnO. The appearance of an intense visible emission band in room-temperature photoluminescence indicates the presence of a high density of intrinsic defects confirming n-type ZnO. The PtIr tip/ZnO Schottky nanocontacts with an ultrafine effective contact radius ~0.5 nm on horizontally dispersed NRs show an ideality factor of ~7, turn on voltage of ~1.0 V, Schottky barrier height of ~0.65 eV, breakdown voltage of ~−4.7 V, and ON to OFF current ratio of ~500 at ±2 V. The junction corresponds to a nanoscale Schottky contact with satisfactory properties which is comparable to the other PtIr/ZnO or Pt/ZnO reports at higher loading forces. Single crystallinity and contact on the side faces of the horizontally dispersed NRs are primarily thought to be the key factors for higher device performances.
引用
收藏
相关论文
共 50 条
  • [11] ATOMIC FORCE MICROSCOPY USING ZNO WHISKER TIP
    KADO, H
    YOKOYAMA, K
    TOHDA, T
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1992, 63 (06): : 3330 - 3332
  • [12] Conductive tips for atomic force microscopy
    不详
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 139 - 139
  • [13] Study of the electron tunnelling in single-barrier nanostructures using the conductive atomic force microscopy
    Gutek J.
    Kosiorek A.
    Czajka R.
    Kempa K.
    Giersig M.
    Journal of Advanced Microscopy Research, 2010, 5 (01) : 11 - 15
  • [14] Atomic force microscopy tip-sample interaction analysis using nanocontact mechanic models
    Daeinabi, K.
    Korayem, M. H.
    MICRO & NANO LETTERS, 2011, 6 (09) : 794 - 798
  • [15] Electrical characterization of ZnO multilayer varistors on the nanometre scale with conductive atomic force microscopy
    Schloffer, Martin
    Teichert, Christian
    Supancic, Peter
    Andreev, Andrei
    Hou, Yue
    Wang, Zhonghua
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (07) : 1761 - 1764
  • [16] Force spectroscopy of single cells using atomic force microscopy
    Viljoen, Albertus
    Mathelie-Guinlet, Marion
    Ray, Ankita
    Strohmeyer, Nico
    Oh, Yoo Jin
    Hinterdorfer, Peter
    Mueller, Daniel J.
    Alsteens, David
    Dufrene, Yves F.
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [17] Force spectroscopy of single cells using atomic force microscopy
    Nature Reviews Methods Primers, 1 (1):
  • [18] Force spectroscopy of single cells using atomic force microscopy
    Albertus Viljoen
    Marion Mathelié-Guinlet
    Ankita Ray
    Nico Strohmeyer
    Yoo Jin Oh
    Peter Hinterdorfer
    Daniel J. Müller
    David Alsteens
    Yves F. Dufrêne
    Nature Reviews Methods Primers, 1
  • [19] Characterization of conductive probes for Atomic Force Microscopy
    Trenkler, T
    Hantschel, T
    Vandervorst, W
    Hellemans, L
    Kulisch, W
    Oesterschulze, E
    Niedermann, P
    Sulzbach, T
    DESIGN, TEST, AND MICROFABRICATION OF MEMS AND MOEMS, PTS 1 AND 2, 1999, 3680 : 1168 - 1179
  • [20] Conductive atomic force microscopy on carbon nanowalls
    Vetushka, A.
    Itoh, T.
    Nakanishi, Y.
    Fejfar, A.
    Nonomura, S.
    Ledinsky, M.
    Kocka, J.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 2545 - 2547