Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
|
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 50 条
  • [11] An efficient finite element method based on dimension reduction scheme for a fourth-order Steklov eigenvalue problem
    Zhang, Hui
    Liu, Zixin
    Zhang, Jun
    OPEN MATHEMATICS, 2022, 20 (01): : 666 - 681
  • [12] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [13] SHARP UPPER BOUNDS ON THE MAXIMUM M-EIGENVALUE OF FOURTH-ORDER PARTIALLY SYMMETRIC NONNEGATIVE TENSORS
    Yao, Yuyan
    Wang, Gang
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (01): : 33 - 44
  • [14] Eigenvalue problem of a class of fourth-order Hamiltonian operators
    WANG Hua
    HUANG Junjie
    Alatancang
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2013, 28 (01) : 101 - 115
  • [15] Eigenvalue problem of a class of fourth-order Hamiltonian operators
    WANG Hua
    HUANG Jun-jie
    Alatancang
    Applied Mathematics:A Journal of Chinese Universities, 2013, (01) : 101 - 115
  • [16] Nodal solutions for a nonlinear fourth-order eigenvalue problem
    Ru Yun Ma
    Bevan Thompson
    Acta Mathematica Sinica, English Series, 2008, 24 : 27 - 34
  • [17] Eigenvalue problem of a class of fourth-order Hamiltonian operators
    Wang Hua
    Huang Jun-jie
    Alatancang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (01) : 101 - 115
  • [18] Nodal solutions for a nonlinear fourth-order eigenvalue problem
    Ma, Ru Yun
    Thompson, Bevan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (01) : 27 - 34
  • [19] Eigenvalue problem of a class of fourth-order Hamiltonian operators
    Hua Wang
    Jun-jie Huang
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 101 - 115