How can machine learning aid behavioral marketing research?

被引:0
|
作者
Linda Hagen
Kosuke Uetake
Nathan Yang
Bryan Bollinger
Allison J. B. Chaney
Daria Dzyabura
Jordan Etkin
Avi Goldfarb
Liu Liu
K. Sudhir
Yanwen Wang
James R. Wright
Ying Zhu
机构
[1] University of Southern California,
[2] Yale University,undefined
[3] Cornell University,undefined
[4] New York University,undefined
[5] Duke University,undefined
[6] New Economic School,undefined
[7] University of Toronto,undefined
[8] University of Colorado Boulder,undefined
[9] Yale University,undefined
[10] University of British Columbia,undefined
[11] University of Alberta,undefined
[12] University of California San Diego,undefined
来源
Marketing Letters | 2020年 / 31卷
关键词
Behavioral science; Big data; Semi-supervised learning; Supervised learning; Unsupervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
Behavioral science and machine learning have rapidly progressed in recent years. As there is growing interest among behavioral scholars to leverage machine learning, we present strategies for how these methods that can be of value to behavioral scientists using examples centered on behavioral research.
引用
收藏
页码:361 / 370
页数:9
相关论文
共 50 条
  • [31] Musings on messages and mediums: How communication and marketing techniques can aid in sleep health promotion
    Robbins, Rebecca
    SLEEP HEALTH, 2024, 10 (01) : S11 - S14
  • [32] Machine Learning for Social and Behavioral Research (Methodology in the Social Sciences)
    Aszani, Aszani
    Anwar, Ruslan
    Jacobucci, Ross
    Grimm, Kevin J.
    Zhang, Zhiyong
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024, 31 (01) : 199 - 203
  • [33] Machine learning in marketing: A literature review, conceptual framework, and research agenda
    Ngai, Eric W. T.
    Wu, Yuanyuan
    JOURNAL OF BUSINESS RESEARCH, 2022, 145 : 35 - 48
  • [34] Research on sport marketing and sustainability: an integrated bibliometric machine learning approach
    Anagnostopoulos, Christos
    Yaqot, Mohammed
    Kolyperas, Dimitrios
    Chadwick, Simon
    SPORT BUSINESS AND MANAGEMENT-AN INTERNATIONAL JOURNAL, 2025,
  • [35] PoSLemma: How Traditional Machine Learning and Linguistics Preprocessing Aid in Machine Generated Text Detection
    Jimenez, Diana
    Cardoso-Moreno, Marco A.
    Aguilar-Canto, Fernando
    Juarez-Gambino, Omar
    Calvo, Hiram
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 921 - 928
  • [36] Why machine learning (ML) has failed physical activity research and how we can improve
    Fuller, Daniel
    Ferber, Reed
    Stanley, Kevin
    BMJ OPEN SPORT & EXERCISE MEDICINE, 2022, 8 (01):
  • [37] How can machine learning predict cholera: insights from experiments and design science for action research
    Amshi, Hauwa Ahmad
    Prasad, Rajesh
    Sharma, Birendra Kumar
    Yusuf, Saratu Ilu
    Sani, Zaharaddeen
    JOURNAL OF WATER AND HEALTH, 2024, 22 (01) : 21 - 35
  • [38] Machine learning and artificial intelligence to aid climate change research and preparedness
    Huntingford, Chris
    Jeffers, Elizabeth S.
    Bonsall, Michael B.
    Christensen, Hannah M.
    Lees, Thomas
    Yang, Hui
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12):
  • [39] Speech Analysis and Machine Learning can Aid in Identifying Different Neurological Disorders
    Sastre, A.
    Vaziri, A.
    Mishra, R.
    Geronimo, A.
    Simmons, Z.
    Adams, J.
    Pantelyat, A.
    Wills, A.
    MOVEMENT DISORDERS, 2024, 39 : S587 - S587
  • [40] How machine learning can accelerate electrocatalysis discovery and optimization
    Steinmann, Stephan N. N.
    Wang, Qing
    Seh, Zhi Wei
    MATERIALS HORIZONS, 2023, 10 (02) : 393 - 406