How can machine learning aid behavioral marketing research?

被引:0
|
作者
Linda Hagen
Kosuke Uetake
Nathan Yang
Bryan Bollinger
Allison J. B. Chaney
Daria Dzyabura
Jordan Etkin
Avi Goldfarb
Liu Liu
K. Sudhir
Yanwen Wang
James R. Wright
Ying Zhu
机构
[1] University of Southern California,
[2] Yale University,undefined
[3] Cornell University,undefined
[4] New York University,undefined
[5] Duke University,undefined
[6] New Economic School,undefined
[7] University of Toronto,undefined
[8] University of Colorado Boulder,undefined
[9] Yale University,undefined
[10] University of British Columbia,undefined
[11] University of Alberta,undefined
[12] University of California San Diego,undefined
来源
Marketing Letters | 2020年 / 31卷
关键词
Behavioral science; Big data; Semi-supervised learning; Supervised learning; Unsupervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
Behavioral science and machine learning have rapidly progressed in recent years. As there is growing interest among behavioral scholars to leverage machine learning, we present strategies for how these methods that can be of value to behavioral scientists using examples centered on behavioral research.
引用
收藏
页码:361 / 370
页数:9
相关论文
共 50 条
  • [1] How can machine learning aid behavioral marketing research?
    Hagen, Linda
    Uetake, Kosuke
    Yang, Nathan
    Bollinger, Bryan
    Chaney, Allison J. B.
    Dzyabura, Daria
    Etkin, Jordan
    Goldfarb, Avi
    Liu, Liu
    Sudhir, K.
    Wang, Yanwen
    Wright, James R.
    Zhu, Ying
    MARKETING LETTERS, 2020, 31 (04) : 361 - 370
  • [2] How Linked Data can Aid Machine Learning-Based Tasks
    Mountantonakis, Michalis
    Tzitzikas, Yannis
    RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES (TPDL 2017), 2017, 10450 : 155 - 168
  • [3] What Behavioral Economics Can Teach Marketing Research
    Rubinson, Joel
    JOURNAL OF ADVERTISING RESEARCH, 2010, 50 (02) : 114 - 117
  • [4] How ethical principles can aid research
    Joël Sternheimer
    Nature, 1999, 402 : 576 - 576
  • [5] How ethical principles can aid research
    Sternheimer, J
    NATURE, 1999, 402 (6762) : 576 - 576
  • [6] Machine learning applications in proteomics research: How the past can boost the future
    Kelchtermans, Pieter
    Bittremieux, Wout
    De Grave, Kurt
    Degroeve, Sven
    Ramon, Jan
    Laukens, Kris
    Valkenborg, Dirk
    Barsnes, Harald
    Martens, Lennart
    PROTEOMICS, 2014, 14 (4-5) : 353 - 366
  • [7] HOW MARKETING-RESEARCH CAN HELP RAILROADS
    KRAMER, W
    JOURNAL OF MARKETING, 1961, 25 (06) : 39 - 46
  • [8] How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign
    Langen, Henrika
    Huber, Martin
    PLOS ONE, 2023, 18 (01):
  • [9] Tutorial: Applying Machine Learning in Behavioral Research
    Turgeon, Stephanie
    Lanovaz, Marc J.
    PERSPECTIVES ON BEHAVIOR SCIENCE, 2020, 43 (04) : 697 - 723
  • [10] Tutorial: Applying Machine Learning in Behavioral Research
    Stéphanie Turgeon
    Marc J. Lanovaz
    Perspectives on Behavior Science, 2020, 43 : 697 - 723