The modified maximum likelihood estimators for the parameters of the regression model under bivariate median ranked set sampling

被引:0
|
作者
Hakan Savaş Sazak
Melis Zeybek
机构
[1] Ege University,Department of Statistics, Faculty of Science
来源
Computational Statistics | 2022年 / 37卷
关键词
Concomitant variable; Regression type estimation; Simple random sampling; Three-parameter Weibull distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We derived the modified maximum likelihood (MML) regression type estimators using bivariate median ranked set sampling (MRSS) and conducted an extensive simulation study to compare them with their least squares (LS) counterparts using MRSS and with the MML and LS counterparts using ranked set sampling (RSS). Under normality, the MML estimators using bivariate MRSS are mostly better than the LS estimators using bivariate MRSS in most of the situations, especially when the correlation between the concomitant and primary variables is high. In general, MRSS is superior to RSS in the estimation of the location parameters of the concomitant and primary variables. In the estimation of the other parameters, RSS is superior to MRSS and the MML estimators using RSS are mostly the best estimators of all. For Weibull distribution, the LS estimators using MRSS are mostly better than the MML estimators using MRSS but in general, the MML estimators using RSS are the superior estimators among all, especially for higher cycles. At the end of the study, we give two examples illustrating the procedures and merits of the newly proposed estimators.
引用
收藏
页码:1069 / 1109
页数:40
相关论文
共 50 条
  • [31] Enhancing mean estimators in median ranked set sampling with dual auxiliary information
    Alharbi, Randa
    Mustafa, Manahil SidAhmed
    Al Mutairi, Aned
    Hussein, Mohamed
    Yusuf, M.
    Elshenawy, Assem
    Nassr, Said G.
    HELIYON, 2023, 9 (11)
  • [32] Efficiency comparison of maximum likelihood estimation in log-logistic distribution using median ranked set sampling
    Jamal, Alaa
    Samuh, Monjed H.
    KUWAIT JOURNAL OF SCIENCE, 2025, 52 (01)
  • [33] Maximum Likelihood Estimator of the Location Parameter under Moving Extremes Ranked Set Sampling Design
    Wang-xue CHEN
    Chun-xian LONG
    Rui YANG
    Dong-sen YAO
    ActaMathematicaeApplicataeSinica, 2021, 37 (01) : 101 - 108
  • [34] Maximum Likelihood Estimator of the Location Parameter under Moving Extremes Ranked Set Sampling Design
    Wang-xue Chen
    Chun-xian Long
    Rui Yang
    Dong-sen Yao
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 101 - 108
  • [35] Estimating parameters of Morgenstern type bivariate distribution using bivariate ranked set sampling
    Al Kadiri, M. A.
    Migdadi, M. K.
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2019, 12 (01) : 190 - 208
  • [36] Maximum Likelihood Estimator of the Location Parameter under Moving Extremes Ranked Set Sampling Design
    Chein, Wang-xue
    Long, Chun-xian
    Yang, Rui
    Yao, Dong-sen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 101 - 108
  • [37] Maximum likelihood estimation of dependence parameter using ranked set sampling
    Modarres, R
    Zheng, G
    STATISTICS & PROBABILITY LETTERS, 2004, 68 (03) : 315 - 323
  • [38] Ranked Set Sampling Based Regression Estimators in Two-Stage Sampling Design
    Yanglem, Worthing
    Khongji, Phrangstone
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2024, 23 (04): : 442 - 455
  • [39] Best linear unbiased estimators for the simple linear regression model using ranked set sampling
    Maria Cecilia Mendes Barreto
    Vic Barnett
    Environmental and Ecological Statistics, 1999, 6 : 119 - 133
  • [40] Best linear unbiased estimators for the simple linear regression model using ranked set sampling
    Barreto, MCM
    Barnett, V
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1999, 6 (02) : 119 - 133