Acyclic colorings of graphs with bounded degree

被引:0
|
作者
Anna Fiedorowicz
Elżbieta Sidorowicz
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
来源
Science China Mathematics | 2016年 / 59卷
关键词
acyclic coloring; bounded degree graph; computational complexity; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.
引用
收藏
页码:1427 / 1440
页数:13
相关论文
共 50 条