Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays

被引:1
|
作者
Ivanka Stamova
机构
[1] The University of Texas at San Antonio,Department of Mathematics
来源
Nonlinear Dynamics | 2014年 / 77卷
关键词
Global Mittag-Leffler stability; Synchronization; Neural networks; Fractional-order derivatives; Time-varying delays; Impulsive control; Lyapunov method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a class of impulsive Caputo fractional-order cellular neural networks with time-varying delays. Applying the fractional Lyapunov method and Mittag-Leffler functions, we give sufficient conditions for global Mittag-Leffler stability which implies global asymptotic stability of the network equilibrium. Our results provide a design method of impulsive control law which globally asymptotically stabilizes the impulse free fractional-order neural network time-delay model. The synchronization of fractional chaotic networks via non-impulsive linear controller is also considered. Illustrative examples are given to demonstrate the effectiveness of the obtained results.
引用
收藏
页码:1251 / 1260
页数:9
相关论文
共 50 条
  • [31] Mittag-Leffler state estimator design and synchronization analysis for fractional-order BAM neural networks with time delays
    Pratap, A.
    Raja, R.
    Rajchakit, Grienggrai
    Cao, Jinde
    Bagdasar, O.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (05) : 855 - 874
  • [32] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    NEUROCOMPUTING, 2016, 193 : 148 - 154
  • [33] Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks
    Li, Hui
    Kao, Yonggui
    Li, Hong-Li
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [34] Global Asymptotic Stability and Adaptive Ultimate Mittag-Leffler Synchronization for a Fractional-Order Complex-Valued Memristive Neural Networks With Delays
    Chen, Jiejie
    Chen, Boshan
    Zeng, Zhigang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2519 - 2535
  • [35] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [36] Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks
    Wu, Ailong
    Zeng, Zhigang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (01) : 206 - 217
  • [37] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [38] Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks
    Chen, Shenglong
    Li, Hong-Li
    Bao, Haibo
    Zhang, Long
    Jiang, Haijun
    Li, Zhiming
    NEUROCOMPUTING, 2022, 511 : 290 - 298
  • [39] Finite-time and global Mittag-Leffler stability of fractional-order neural networks with S-type distributed delays
    Liu, Wei
    Zuo, Qinghua
    Xu, Chen
    AIMS MATHEMATICS, 2024, 9 (04): : 8339 - 8352
  • [40] Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks
    Fengxian Wang
    Fang Wang
    Xinge Liu
    Advances in Difference Equations, 2021