Convergence of Discrete-Velocity Schemes for the Boltzmann Equation

被引:0
|
作者
Stéphane Mischler
机构
[1] Départment de Mathématiques,
[2] Université de Versailles-Saint-Quentin,undefined
[3] Bâtiment Fermat,undefined
[4] 45,undefined
[5] avenue des États-Unis,undefined
[6] 78055 Versailles Cedex,undefined
关键词
Continuous Equation; Boltzmann Equation; Velocity Average; Discretized Equation; Collision Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the convergence of two discrete-velocity deterministic schemes for the Boltzmann equation, namely, Buet's scheme and a new finite-volume scheme that we introduce here. We write the discretized equation in the form of a Boltzmann continuous equation in order to be in the framework of the DiPerna-Lions theory of renormalized solutions. In order to prove convergence we have to overcome two difficulties: the convergence of the discretized collision kernel is very weak and the lemma on the compactness of velocity averages can be recovered only asymptotically when the parameter of discretization tends to zero.
引用
收藏
页码:53 / 77
页数:24
相关论文
共 50 条
  • [31] NUMERICAL STUDY OF DISCRETE-VELOCITY GASES
    INAMURO, T
    STURTEVANT, B
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (12): : 2196 - 2203
  • [32] Discrete-velocity model for the shallow-water long-wave equation
    Shi, Weiping
    Geng, Aifang
    Zhang, Zhongxin
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2002, 19 (04): : 393 - 397
  • [33] APPROXIMATION OF THE BOLTZMANN-EQUATION BY DISCRETE VELOCITY MODELS
    WAGNER, W
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) : 1555 - 1570
  • [34] On the sizes of discrete velocity models of the Boltzmann equation for mixtures
    Adzhiev S.Z.
    Vedenyapin V.V.
    Computational Mathematics and Mathematical Physics, 2007, 47 (6) : 998 - 1006
  • [35] ON APPROXIMATION OF THE BOLTZMANN-EQUATION BY DISCRETE VELOCITY MODELS
    BOBYLEV, AV
    PALCZEWSKI, A
    SCHNEIDER, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (05): : 639 - 644
  • [36] DISCRETE VELOCITY MODELS OF THE BOLTZMANN EQUATION AND CONSERVATION LAWS
    Bobylev, Alexander
    Vinerean, Mirela
    Windfall, Asa
    KINETIC AND RELATED MODELS, 2010, 3 (01) : 35 - 58
  • [37] Discrete Velocity Scheme for Solving the Boltzmann Equation with the GPGPU
    Malkov, E. A.
    Poleshkin, S. O.
    Ivanov, M. S.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 318 - 325
  • [38] Construction of normal discrete velocity models of the Boltzmann equation
    Vinerean, M. C.
    Windfall, A.
    Bobylev, A. V.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01): : 257 - 264
  • [39] Discrete-velocity models for kinetic nonequilibrium flows
    Charrier, P
    Dubroca, B
    Feugeas, JL
    Mieussens, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (11): : 1347 - 1352
  • [40] Convergence of discrete schemes for the Perona-Malik equation
    Bellettini, G.
    Novaga, M.
    Paolini, M.
    Tornese, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) : 892 - 924