Minimum Clique Partition in Unit Disk Graphs

被引:0
|
作者
Adrian Dumitrescu
János Pach
机构
[1] University of Wisconsin–Milwaukee,
[2] Ecole Polytechnique Fédérale de Lausanne and City College,undefined
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Unit disk graph; Clique partition;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^2)}}$$\end{document}. This improves on a previous PTAS with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^4)}}$$\end{document} running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).
引用
收藏
页码:399 / 411
页数:12
相关论文
共 50 条
  • [21] (6+ε)-approximation for minimum weight dominating set in unit disk graphs
    Gao, Xiaofeng
    Huang, Yaochun
    Zhang, Zhao
    Wu, Weili
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 551 - +
  • [22] Computing a Maximum Clique in Geometric Superclasses of Disk Graphs
    Grelier, Nicolas
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 299 - 310
  • [23] Computing a maximum clique in geometric superclasses of disk graphs
    Nicolas Grelier
    Journal of Combinatorial Optimization, 2022, 44 : 3106 - 3135
  • [24] Computing a maximum clique in geometric superclasses of disk graphs
    Grelier, Nicolas
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 3106 - 3135
  • [25] Minimum Clique-Free Subgraphs of Kneser Graphs
    Vahrushev, S. V.
    Zhukovskii, M. E.
    Kiselev, S. G.
    Skorkin, A. Yu
    DOKLADY MATHEMATICS, 2020, 102 (03) : 472 - 473
  • [26] On the minimum clique partitioning problem on weighted chordal graphs
    Jo, Changseong
    Choi, Jihoon
    Kim, Suh-Ryung
    Sano, Yoshio
    THEORETICAL COMPUTER SCIENCE, 2019, 791 : 1 - 9
  • [27] Minimum Clique-Free Subgraphs of Kneser Graphs
    S. V. Vahrushev
    M. E. Zhukovskii
    S. G. Kiselev
    A. Yu. Skorkin
    Doklady Mathematics, 2020, 102 : 472 - 473
  • [28] Bisectored unit disk graphs
    Nolan, J
    NETWORKS, 2004, 43 (03) : 141 - 152
  • [29] Routing in Unit Disk Graphs
    Kaplan, Haim
    Mulzer, Wolfgang
    Roditty, Liam
    Seiferth, Paul
    ALGORITHMICA, 2018, 80 (03) : 830 - 848
  • [30] On Coloring Unit Disk Graphs
    A. Gräf
    M. Stumpf
    G. Weißenfels
    Algorithmica, 1998, 20 : 277 - 293