On the Essential Features of Metastability: Tunnelling Time and Critical Configurations

被引:0
|
作者
F. Manzo
F. R. Nardi
E. Olivieri
E. Scoppola
机构
[1] Università di Roma La Sapienza,Dipartimento di Matematica
[2] Università di Roma Tor Vergata,Dipartimento di Matematica
[3] Università di Roma Tre,Dipartimento di Matematica
[4] Istituto Nazionale di Fisica della Materia,undefined
来源
Journal of Statistical Physics | 2004年 / 115卷
关键词
Metastability; Metropolis Markov chains; tunneling time; saddle configurations; gates; Ising model;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Metropolis Markov chains with finite state space and transition probabilities of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P(\eta ,\eta ')=q(\eta ,\eta ')e^{- \beta [H(\eta ') - H(\eta)]_+}$$ \end{document} for given energy function H and symmetric Markov kernel q. We propose a simple approach to determine the asymptotic behavior, for large β, of the first hitting time to the ground state starting from a particular class of local minima for H called metastable states. We separate the asymptotic behavior of the transition time from the determination of the tube of typical paths realizing the transition. This approach turns out to be useful when the determination of the tube of typical paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure of the saddles introducing the notion of “essentiality” and describing essential saddles in terms of “gates.” As an example we discuss the case of the 2D Ising Model in the degenerate case of integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tfrac{{2j}}{h}}$$ \end{document}.
引用
收藏
页码:591 / 642
页数:51
相关论文
共 50 条
  • [31] QUANTUM TUNNELLING - BARRIER TRAVERSAL TIME
    LANDAUER, R
    NATURE, 1989, 341 (6243) : 567 - 568
  • [32] Time and settlement in EPB shield tunnelling
    Fang, Yung-Show
    Lin, Shyh-Jye
    Lin, Jaw-Shuenn
    Tunnels and Tunnelling, 1993, 25 (11):
  • [33] Attosecond science and the tunnelling time problem
    Landsman, Alexandra S.
    Keller, Ursula
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 547 : 1 - 24
  • [34] Attoclock revisited on electron tunnelling time
    Hofmann, C.
    Landsman, A. S.
    Keller, U.
    JOURNAL OF MODERN OPTICS, 2019, 66 (10) : 1052 - 1070
  • [35] Critical assessment of different models of the metastability in a-Si:H
    Chierchia, Rosa
    Loreti, Stefano
    Loreto, Vittorio
    Mariucci, Luigi
    Minarini, Carla
    Mittiga, Alberto
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (4 A): : 1736 - 1746
  • [36] Critical Metastability and Destruction of the Splitting in Non-Autonomous Systems
    Vincenzo Grecchi
    Andrea Sacchetti
    Journal of Statistical Physics, 2001, 103 : 339 - 368
  • [37] Tunnelling time in strong field ionisation
    Landsman, Alexandra S.
    Keller, Ursula
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (20)
  • [38] QUANTUM PHYSICS Attoclock and tunnelling time
    Rost, Jan M.
    Saalmann, Ulf
    NATURE PHOTONICS, 2019, 13 (07) : 439 - 440
  • [39] TUNNELLING LEVELS AND SPECIFIC-HEAT OF ONE-DIMENSIONAL CHAOTIC CONFIGURATIONS
    SCHILLING, R
    HELVETICA PHYSICA ACTA, 1984, 57 (06): : 823 - 823
  • [40] Characteristic features of tunnelling in small-area junctions
    A. I. Khachaturov
    Journal of Experimental and Theoretical Physics, 2003, 97 : 781 - 787