On the Essential Features of Metastability: Tunnelling Time and Critical Configurations

被引:0
|
作者
F. Manzo
F. R. Nardi
E. Olivieri
E. Scoppola
机构
[1] Università di Roma La Sapienza,Dipartimento di Matematica
[2] Università di Roma Tor Vergata,Dipartimento di Matematica
[3] Università di Roma Tre,Dipartimento di Matematica
[4] Istituto Nazionale di Fisica della Materia,undefined
来源
Journal of Statistical Physics | 2004年 / 115卷
关键词
Metastability; Metropolis Markov chains; tunneling time; saddle configurations; gates; Ising model;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Metropolis Markov chains with finite state space and transition probabilities of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P(\eta ,\eta ')=q(\eta ,\eta ')e^{- \beta [H(\eta ') - H(\eta)]_+}$$ \end{document} for given energy function H and symmetric Markov kernel q. We propose a simple approach to determine the asymptotic behavior, for large β, of the first hitting time to the ground state starting from a particular class of local minima for H called metastable states. We separate the asymptotic behavior of the transition time from the determination of the tube of typical paths realizing the transition. This approach turns out to be useful when the determination of the tube of typical paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure of the saddles introducing the notion of “essentiality” and describing essential saddles in terms of “gates.” As an example we discuss the case of the 2D Ising Model in the degenerate case of integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\tfrac{{2j}}{h}}$$ \end{document}.
引用
收藏
页码:591 / 642
页数:51
相关论文
共 50 条
  • [1] On the essential features of metastability: Tunnelling time and critical configurations
    Manzo, F
    Nardi, FR
    Olivieri, E
    Scoppola, E
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 591 - 642
  • [2] Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations
    Emilio N. M. Cirillo
    Francesca R. Nardi
    Julien Sohier
    Journal of Statistical Physics, 2015, 161 : 365 - 403
  • [3] Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations
    Cirillo, Emilio N. M.
    Nardi, Francesca R.
    Sohier, Julien
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 365 - 403
  • [4] Vortex configurations and metastability in mesoscopic superconductors
    Silva, CCD
    Cabral, LRE
    Aguiar, JA
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 404 (1-4): : 11 - 17
  • [5] METASTABILITY OF WALL CONFIGURATIONS IN FERROMAGNETIC NANOWIRES
    Carbou, Gilles
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 45 - 95
  • [6] A note on the capacity estimate in metastability for generic configurations
    Avelin, Benny
    Julin, Vesa
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 245 - 266
  • [7] DEPENDENCE SYNDROME - A CRITICAL ANALYSIS OF ESSENTIAL FEATURES
    MILLER, NS
    GOLD, MS
    PSYCHIATRIC ANNALS, 1991, 21 (05) : 282 - 288
  • [8] Tunnelling time and tunnelling dynamics
    Maji, Kaushik
    Mondal, C. K.
    Bhattacharyya, S. P.
    INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) : 647 - 670
  • [9] HAZARDS, CRITICAL RACES, AND METASTABILITY
    UNGER, SH
    IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (06) : 754 - 768
  • [10] METASTABILITY AND CRITICAL-POINTS
    GALAM, S
    BIRMA, JL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (32): : 1145 - 1149