Single-electron Spin Resonance in a Quadruple Quantum Dot

被引:0
|
作者
Tomohiro Otsuka
Takashi Nakajima
Matthieu R. Delbecq
Shinichi Amaha
Jun Yoneda
Kenta Takeda
Giles Allison
Takumi Ito
Retsu Sugawara
Akito Noiri
Arne Ludwig
Andreas D. Wieck
Seigo Tarucha
机构
[1] Center for Emergent Matter Science,Department of Applied Physics
[2] RIKEN,undefined
[3] University of Tokyo,undefined
[4] Angewandte Festkörperphysik,undefined
[5] Ruhr-Universität Bochum,undefined
[6] Quantum-Phase Electronics Center,undefined
[7] University of Tokyo,undefined
[8] Institute for Nano Quantum Information Electronics,undefined
[9] University of Tokyo,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.
引用
收藏
相关论文
共 50 条
  • [41] Single-electron current gain in a quantum dot with three leads
    Welker, Armin C.
    Weis, Juergen
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (10)
  • [42] 'Cutoff Frequency' of Quantum-Dot Single-Electron Pump
    Ahn, Ye-Hwan
    Hong, Changki
    Ghee, Young-Seok
    Chung, Yunchul
    Bae, Myung-Ho
    Kim, Nam
    2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
  • [43] Single-electron transistors with a self-assembled quantum dot
    Dilger, M
    Haug, RJ
    Eberl, K
    vonKlitzing, K
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (11) : 1493 - 1497
  • [44] Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot
    Kurzmann, A.
    Stegmann, P.
    Kerski, J.
    Schott, R.
    Ludwig, A.
    Wieck, A. D.
    Koenig, J.
    Lorke, A.
    Geller, M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (24)
  • [45] Thermoelectric Efficiency of a Quantum Dot in the Single-Electron Transistor Configuration
    Zianni, X.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 1996 - 2001
  • [46] A single-electron probe for buried optically active quantum dot
    Nakaoka, T.
    Watanabe, K.
    Kumagai, N.
    Arakawa, Y.
    AIP ADVANCES, 2012, 2 (03):
  • [47] Algorithm for automated tuning of a quantum dot into the single-electron regime
    Lapointe-Major, M.
    Germain, O.
    Lemyre, J. Camirand
    Lachance-Quirion, D.
    Rochette, S.
    Lemyre, F. Camirand
    Pioro-Ladriere, M.
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [48] Single-electron routing in a silicon quantum-dot array
    Utsugi, Takeru
    Kuno, Takuma
    Lee, Noriyuki
    Tsuchiya, Ryuta
    Mine, Toshiyuki
    Hisamoto, Digh
    Saito, Shinichi
    Mizuno, Hiroyuki
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [49] Energy Levels in a Single-Electron Quantum Dot with Hydrostatic Pressure
    Caicedo-Ortiz, H. E.
    Castaneda Fernandez, H. O.
    Santiago-Cortes, E.
    Mantilla-Sandoval, D. A.
    ACTA PHYSICA POLONICA A, 2018, 134 (02) : 570 - 573
  • [50] Valley relaxation in a single-electron bilayer graphene quantum dot
    Wang, Lin
    Burkard, Guido
    PHYSICAL REVIEW B, 2024, 110 (03)