Asymptotic behavior of solutions of the cauchy problem x′ =f(t,x,x′), x(0) = 0

被引:0
|
作者
Zernov A.E. [1 ]
Kuzina Yu.V. [1 ]
机构
[1] South-Ukrainian Pedagogic University, Odessa
关键词
Asymptotic Behavior; Cauchy Problem; Differentiable Solution;
D O I
10.1023/A:1024037718175
中图分类号
学科分类号
摘要
We prove the existence of continuously differentiable solutions x : (0, ρ]→ ℝn such that ∥x(t)-ξ(t)∥ = O(η(t)), ∥x′(t)-ξ′(t)∥ = O(η(t)/t), t→+0 or ∥x(t)-SN(t)∥ = O(tN+1), ∥x′(t)-S N′(t)∥ = O(tN), t→+0, where ξ: (0, τ) → ℝn, η:(0,τ)→(0, +∞), ∥ξ(t)∥ = o(1), η(t) = o(t), η(t) = o(∥ξ(t)∥), t→+0, SN(t) = Σk=2Nc ktk, ck ∈ ℝn, k ∈ {2, ... , N}, 0 < ρ < τ, ρ is sufficiently small. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:2060 / 2066
页数:6
相关论文
共 50 条