Numerical methods for the simulation of a coalescence-driven droplet size distribution

被引:1
|
作者
Róbert Bordás
Volker John
Ellen Schmeyer
Dominique Thévenin
机构
[1] University of Magdeburg “Otto von Guericke”,Department of Mathematics and Computer Science
[2] Weierstrass Institute for Applied Analysis and Stochastics Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS),undefined
[3] Free University of Berlin,undefined
关键词
Droplet Size Distribution; Population Balance; Internal Coordinate; Inlet Boundary Condition; Collision Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
The droplet size distribution in a turbulent flow field is considered and modeled by means of a population balance system. This paper studies different numerical methods for the 4D population balance equation and their impact on an output of interest, the time-space-averaged droplet size distribution at the outlet, which is known from experiments. These methods include different interpolations of the experimental data at the inlet, various discretizations in time and space, and different schemes for computing the coalescence integrals. It will be shown that noticeable changes in the output of interest might occur. In addition, the computational efficiency of the studied methods is discussed.
引用
收藏
页码:253 / 271
页数:18
相关论文
共 50 条
  • [41] Numerical simulation to estimate the droplet size in aerosol solvent extraction system
    Kumar, Rahul
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 1515 - 1519
  • [42] Numerical simulations and measurements of a droplet size distribution in a turbulent vortex street
    Schmeyer, Ellen
    Bordas, Robert
    Thevenin, Dominique
    John, Volker
    METEOROLOGISCHE ZEITSCHRIFT, 2014, 23 (04) : 387 - 396
  • [43] EFFECT OF AEROSOL COMPOSITION ON CLOUD DROPLET SIZE DISTRIBUTION - NUMERICAL STUDY
    FITZGERALD, JW
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1974, 31 (05) : 1358 - 1367
  • [44] INVERSION TECHNIQUES FOR DETERMINING DROPLET SIZE DISTRIBUTION IN CLOUDS - NUMERICAL EXAMINATION
    CHOW, LC
    TIEN, CL
    APPLIED OPTICS, 1976, 15 (02): : 378 - 383
  • [45] Process and Distribution of Droplet Coalescence Based on Dielectrophoresis Effect
    Hu, Sheng
    Chen, Yue-Jiang
    Lyu, Xiao-Yong
    Wu, Dong-Xu
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (10): : 1386 - 1390
  • [46] Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect
    Wang, Kai
    Liang, Qianqing
    Jiang, Rui
    Zheng, Yi
    Lan, Zhong
    Ma, Xuehu
    LANGMUIR, 2017, 33 (25) : 6258 - 6268
  • [47] Numerical simulation of droplet coalescence behavior in gas phase under the coupling of electric field and flow field
    Hong, Wenpeng
    Ye, Xiangyun
    Chen, Qicheng
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2018, 39 (03) : 395 - 401
  • [48] Novel coalescence-driven grain-growth mechanism during annealing/spark plasma sintering of NiO nanocrystals
    Akkiraju, K.
    Kashyap, S.
    Srivastav, Ajeet K.
    Chawake, Niraj
    Bichler, L.
    Murty, B. S.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (15) : 4973 - 4977
  • [49] Difference in the dynamic scaling behavior of droplet size distribution for coalescence under pulsed and continuous vapor delivery
    Narhe, RD
    Khandkar, MD
    Adhi, KP
    Limaye, AV
    Sainkar, SR
    Ogale, SB
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1570 - 1573
  • [50] Numerical simulation of coalescence of numerous microcracks
    Feng, XQ
    Ma, L
    Computational Mechanics, Proceedings, 2004, : 334 - 339