Computing minimal Weierstrass equations of hyperelliptic curves

被引:0
|
作者
Qing Liu
机构
[1] Université de Bordeaux,Institut de Mathématiques de Bordeaux, CNRS UMR 5251
来源
关键词
11G30; 11G20;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for determining a minimal Weierstrass equation for hyperelliptic curves over principal ideal domains. When the curve has a rational Weierstrass point w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_0$$\end{document}, we also give a similar algorithm for determining the minimal Weierstrass equation with respect to w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] COMPUTING INTEGRAL POINTS ON HYPERELLIPTIC CURVES USING QUADRATIC CHABAUTY
    Balakrishnan, Jennifer S.
    Besser, Amnon
    Mueller, J. Steffen
    MATHEMATICS OF COMPUTATION, 2017, 86 (305) : 1403 - 1434
  • [42] DIFFERENTIAL CHARACTERIZATION OF WEIERSTRASS HYPERELLIPTIC POINTS
    LESCURE, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (23): : 1043 - 1045
  • [43] Mean field equations, hyperelliptic curves and modular forms: I
    Chai, Ching-Li
    Lin, Chang-Shou
    Wang, Chin-Lung
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2015, 3 (1-2) : 127 - 274
  • [44] Integrable evolutionary equations via lie algebras on hyperelliptic curves
    Holod, P
    Skrypnyk, T
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 199 - 210
  • [45] Computing Local p-adic Height Pairings on Hyperelliptic Curves
    Balakrishnan, Jennifer S.
    Besser, Amnon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (11) : 2405 - 2444
  • [46] A Review on the Isomorphism Classes of Hyperelliptic Curves of Genus 2 over Finite Fields Admitting a Weierstrass Point
    J. Espinosa García
    L. Hernández Encinas
    J. Muñoz Masqué
    Acta Applicandae Mathematica, 2006, 93 : 299 - 318
  • [47] Computing L-series of geometrically hyperelliptic curves of genus three
    Harvey, David
    Massierer, Maike
    Sutherland, Andrew V.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 : 220 - 234
  • [48] A review on the isomorphism classes of hyperelliptic curves of genus 2 over finite fields admitting a Weierstrass point
    Garcia, J. Espinosa
    Encinas, L. Hernandez
    Masque, J. Munoz
    ACTA APPLICANDAE MATHEMATICAE, 2006, 93 (1-3) : 299 - 318
  • [49] Computing integral points on genus 2 curves estimating hyperelliptic logarithms
    Gallegos-Ruiz, Homero R.
    ACTA ARITHMETICA, 2019, 187 (04) : 329 - 344
  • [50] Jacobian groups of hyperelliptic curves in hyperelliptic cryptosystems
    You, L
    Fan, Y
    CHINESE JOURNAL OF ELECTRONICS, 2003, 12 (04): : 642 - 647