Computing minimal Weierstrass equations of hyperelliptic curves

被引:0
|
作者
Qing Liu
机构
[1] Université de Bordeaux,Institut de Mathématiques de Bordeaux, CNRS UMR 5251
来源
关键词
11G30; 11G20;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an algorithm for determining a minimal Weierstrass equation for hyperelliptic curves over principal ideal domains. When the curve has a rational Weierstrass point w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_0$$\end{document}, we also give a similar algorithm for determining the minimal Weierstrass equation with respect to w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_0$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Computing minimal Weierstrass equations of hyperelliptic curves
    Liu, Qing
    RESEARCH IN NUMBER THEORY, 2023, 9 (04)
  • [2] GLOBAL WEIERSTRASS EQUATIONS OF HYPERELLIPTIC CURVES
    Liu, Qing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5889 - 5906
  • [3] WEIERSTRASS POINTS ON HYPERELLIPTIC MODULAR CURVES
    Jeon, Daeyeol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (04): : 379 - 384
  • [4] Weierstrass points on hyperelliptic modular curves
    Jeon, Daeyeol
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2019, 95 (07) : 65 - 69
  • [5] Minimal integral Weierstrass equations for genus 2 curves
    Beshaj, Lubjana
    HIGHER GENUS CURVES IN MATHEMATICAL PHYSICS AND ARITHMETIC GEOMETRY, 2018, 703 : 63 - 82
  • [6] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2015, 90 (03) : 721 - 730
  • [7] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Gilvan Oliveira
    Francisco L. R. Pimentel
    Semigroup Forum, 2015, 90 : 721 - 730
  • [8] Weierstrass Semigroups from Cyclic Covers of Hyperelliptic Curves
    Ethan Cotterill
    Nathan Pflueger
    Naizhen Zhang
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [9] Extremality of loci of hyperelliptic curves with marked Weierstrass points
    Chen, Dawei
    Tarasca, Nicola
    Algebra & Number Theory, 2016, 10 (09) : 1935 - 1948
  • [10] Weierstrass Semigroups from Cyclic Covers of Hyperelliptic Curves
    Cotterill, Ethan
    Pflueger, Nathan
    Zhang, Naizhen
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):