Theory and algorithm of optimal control solution to dynamic system parameters identification (II) — Stochastic system parameters identification and application example

被引:0
|
作者
Wu Zhigang
Wang Benli
Ma Xingrui
机构
[1] Harbin Institute of Technology,Department of Astronautics and Mechanics
[2] Chinese Academy of Space Technology,undefined
关键词
dynamic system; parameters identification; optimal control; HJB equation;
D O I
10.1007/BF02463848
中图分类号
学科分类号
摘要
Based on the contents of part (I) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness of the theory developed in this paper and part (I), then the procedure of establishing Hamilton-Jacobi-Bellman (HJB) equations of parameters identification problem is presented. And then, parameters identification algorithm of stochastic dynamic system is introduced. At last, an application example-local nonlinear parameters identification of dynamic system is presented.
引用
收藏
页码:241 / 246
页数:5
相关论文
共 50 条
  • [21] Parameters identification and trajectory control for a hydraulic system
    Feng, Hao
    Yin, Chenbo
    Ma, Wei
    Yu, Hongfu
    Cao, Donghui
    ISA TRANSACTIONS, 2019, 92 : 228 - 240
  • [22] Quadrotor Parameters Identification and Control System Design
    Filatov, Denis M.
    Devyatkin, Aleksey V.
    Friedrich, Anastasya. I.
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 826 - 830
  • [23] The parameters identification of the automatic control system with the controller
    Bobobekov, K. M.
    Troshina, G. V.
    Voevoda, A. A.
    XII INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE APPLIED MECHANICS AND SYSTEMS DYNAMICS, 2019, 1210
  • [24] Fuzzy identification of nonlinear parameters based on optimal control theory
    Beijing Univ. of Posts and Telecommunications, Beijing 100876, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2008, 3 (540-543):
  • [25] STOCHASTIC DYNAMIC SYSTEM SUBOPTIMAL CONTROL WITH UNCERTAIN PARAMETERS
    LEE, MH
    KOLODZIEJ, WJ
    MOHLER, RR
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1985, 21 (05) : 594 - 600
  • [26] Optimal Control of Elliptic System and Identification of its Parameters for Observation of Solutions Derivatives
    Sergienko, I. V.
    Deineka, V. S.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (10) : 1 - 25
  • [27] OPTIMAL CONTROL OF THE PARABOLIC SYSTEM AND IDENTIFICATION OF ITS PARAMETERS FOR THE KNOWN HEAT FLOWS
    Sergienko, I. V.
    Deineka, V. S.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (01) : 38 - 59
  • [28] Identification of local nonlinear parameters of a dynamic system by dynamic programming
    Wu, Zhigang
    Wang, Tianshu
    Wang, Benli
    Ma, XingRui
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 1998, 11 (03): : 298 - 304
  • [29] Fusion identification algorithm for parameters approximately measured system
    Du, Qing-Dong
    Xu, Ling-Yu
    Zhao, Hai
    Kongzhi yu Juece/Control and Decision, 2001, 16 (SUPPL.): : 787 - 790
  • [30] OBSERVER ALGORITHM IDENTIFICATION OF SYSTEM STRUCTURE, PARAMETERS, AND STATES
    MOLNAR, DO
    JOURNAL OF SPACECRAFT AND ROCKETS, 1975, 12 (07) : 437 - 439