Potential microalgal strains for converting flue gas CO2 into biomass

被引:0
|
作者
Xuejie Jin
Sanqiang Gong
Zishuo Chen
Jinlan Xia
Wenzhou Xiang
机构
[1] Chinese Academy of Sciences,Key Laboratory of Tropical Marine Bio
[2] Ministry of Education of China,resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology
[3] Central South University,Key Laboratory of Biometallurgy
来源
Journal of Applied Phycology | 2021年 / 33卷
关键词
Screening; Microalgae; Flue gas CO; Biomass; CO; fixation rate;
D O I
暂无
中图分类号
学科分类号
摘要
A screening method using 15% CO2 (v/v) as screening stress and a spotting plate method was developed to isolate microalgae with the potential to convert flue gas CO2 to biomass. A total of six microalgal strains, belonging to the genera Chlorella, Heynigia, Desmodesmus, and Scenedesmus, were isolated from ponds near metallurgical/cement/power plants. The growth of these isolated strains was dramatically promoted at 5 to 15% CO2 when they were cultivated in bubble column photobioreactors aerating with 0.03%, 5%, 10%, and 15% CO2. The growth of Heynigia riparia SX01 in particular showed substantial improvement with the increase of CO2 concentrations from 5 to 15%. Furthermore, the maximum biomass, overall biomass productivity, maximum biomass productivity, and maximum CO2 fixation rate of these microalgal strains greatly increased at 5 to 15% CO2 as well. Chlorella sorokiniana GS03 showed the highest values in maximum biomass productivity (0.36 g L−1 day−1) and maximum CO2 fixation rate (0.66 g L−1 day−1) at 5% CO2. Heynigia riparia SX01 exhibited the highest values of maximum biomass (3.28 g L−1), overall biomass productivity (0.27 g L−1 day−1), maximum biomass productivity (0.39 g L−1 day−1), and maximum CO2 fixation rate (0.71 g L−1 day−1) at 15% CO2. This study provides not only an efficient screening method obtaining microalgae with wide CO2 tolerance but also microalgal strains utilizing high levels of CO2 up to 15% to produce biomass, which contributes to further exploration in converting real flue gas CO2 into biomass feedstock.
引用
收藏
页码:47 / 55
页数:8
相关论文
共 50 条
  • [21] Separation of CO2 from flue gas:: A review
    Aaron, D
    Tsouris, C
    SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) : 321 - 348
  • [22] CO2 RECOVERY FROM FLUE-GAS
    PAULEY, CR
    CHEMICAL ENGINEERING PROGRESS, 1984, 80 (05) : 59 - 62
  • [23] RECOVERING CO2 FROM FLUE-GAS
    EDWARDS, A
    FOOD MANUFACTURE, 1985, 60 (09): : 83 - 83
  • [24] CO2 Capture from Flue Gas with Monoethanolamine
    Cebrucean, Viorica
    Ionel, Ioana
    REVISTA DE CHIMIE, 2012, 63 (07): : 678 - 681
  • [25] CO2 and water removal from flue gas
    Wessling, M.
    Potrek, J.
    Nijmeijer, D.
    Reijerkerk, S.
    Fischbein, K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [26] Studies on CO2 Absorption in Simulating Flue Gas
    Lu Jian-yi
    Shi Xiao-bin
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 961 - 965
  • [27] Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae
    Cheah, Wai Yan
    Show, Pau Loke
    Chang, Jo-Shu
    Ling, Tau Chuan
    Juan, Joon Ching
    BIORESOURCE TECHNOLOGY, 2015, 184 : 190 - 201
  • [28] Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO2 from flue gases
    Lage, Sandra
    Gentili, Francesco G.
    CHEMOSPHERE, 2023, 313
  • [29] Utilisation of tris(hydroxymethyl)aminomethane as a gas carrier in microalgal cultivation to enhance CO2 utilisation and biomass production
    Sun, Zhong-Liang
    Xue, Sheng-Zhang
    Yan, Cheng-hu
    Cong, Wei
    Kong, De-Zhu
    RSC ADVANCES, 2016, 6 (04): : 2703 - 2711
  • [30] Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ
    Yadav, Geetanjali
    Karemore, Ankush
    Dash, Sukanta Kumar
    Sen, Ramkrishna
    BIORESOURCE TECHNOLOGY, 2015, 191 : 399 - 406