On the structure of conformally compact Einstein metrics

被引:0
|
作者
Michael T. Anderson
机构
[1] S.U.N.Y. at Stony Brook,Department of Mathematics
关键词
53C25; 58D27; 35J57;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an (n + 1)-dimensional manifold with non-empty boundary, satisfying π1(M, ∂M) = 0. The main result of this paper is that the space of conformally compact Einstein metrics on M is a smooth, infinite dimensional Banach manifold, provided it is non-empty. We also prove full boundary regularity for such metrics in dimension 4 and a local existence and uniqueness theorem for such metrics with prescribed metric and stress–energy tensor at conformal infinity, again in dimension 4. This result also holds for Lorentzian–Einstein metrics with a positive cosmological constant.
引用
收藏
页码:459 / 489
页数:30
相关论文
共 50 条
  • [21] Ricci flow of conformally compact metrics
    Bahuaud, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (06): : 813 - 835
  • [22] Nontrivial conformally steckel metrics in einstein spaces
    Bagrov V.G.
    Obukhov V.V.
    Osetrin K.E.
    Russian Physics Journal, 1997, 40 (10) : 995 - 999
  • [23] Obstructions to conformally Einstein metrics in n dimensions
    Gover, AR
    Nurowski, P
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (03) : 450 - 484
  • [24] The gap phenomenon for conformally related Einstein metrics
    Silhan, Josef
    Gregorovic, Jan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024,
  • [25] On the renormalized volumes for conformally compact Einstein manifolds
    Yang P.
    Chang S.-Yu.A.
    Qing J.
    Journal of Mathematical Sciences, 2008, 149 (6) : 1755 - 1769
  • [26] Comparison Between Conformal Invariants for Conformally Compact Einstein Metrics: Some Counter-Example from the Metrics Developed by Pedersen
    Fraux, Paul
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (04) : 357 - 365
  • [27] Conformally Kahler base metrics for Einstein warped products
    Maschler, Gideon
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 85 - 92
  • [28] EINSTEIN AND CONFORMALLY FLAT CRITICAL METRICS OF THE VOLUME FUNCTIONAL
    Miao, Pengzi
    Tam, Luen-Fai
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 2907 - 2937
  • [29] Global obstructions to conformally Einstein metrics in dimension six
    Case, Jeffrey S.
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 1085 - 1098
  • [30] Conformally Kahler geometry and quasi-Einstein metrics
    Batat, Wafaa
    Hall, Stuart J.
    Jizany, Ali
    Murphy, Thomas
    MUENSTER JOURNAL OF MATHEMATICS, 2015, 8 (01): : 211 - 228