Periodic solutions in one-dimensional coupled map lattices

被引:0
|
作者
Zheng Yong-ai
Liu Zeng-rong
机构
[1] Yangzhou University,Department of Mathematics
[2] Shanghai University,Department of Mathematics
关键词
coupled map lattice; nonlinear periodic solution; anti-integrable limit; logistic map; O175; 34C25; 34A12;
D O I
10.1007/BF02435864
中图分类号
学科分类号
摘要
It is proven that the existence of nonlinear solutions with time period in one-dimensional coupled map lattice with nearest neighbor coupling. This is a class of systems whose behavior can be regarded as infinite array of coupled oscillators. A method for estimating the critical coupling strength below which these solutions with time period persist is given. For some particular nonlinear solutions with time period, exponential decay in space is proved.
引用
收藏
页码:521 / 526
页数:5
相关论文
共 50 条
  • [21] One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
    Belykh, VN
    Mosekilde, E
    PHYSICAL REVIEW E, 1996, 54 (04): : 3196 - 3203
  • [22] Li-Yorke chaos on one-dimensional map lattices
    Wei, Lili
    Zhou, Chenxing
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [23] Characteristic wavefunctions of one-dimensional periodic, quasiperiodic and random lattices
    Huang, XQ
    Jiang, SS
    Peng, RW
    Liu, YM
    Qiu, F
    Hu, A
    MODERN PHYSICS LETTERS B, 2003, 17 (27-28): : 1461 - 1476
  • [24] SPECTRAL ASYMPTOTICS IN ONE-DIMENSIONAL PERIODIC LATTICES WITH GEOMETRIC INTERACTION
    Chremmos, Ioannis
    Fikioris, George
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (03) : 950 - 975
  • [25] Anharmonicity-induced solitons in one-dimensional periodic lattices
    Szeftel, J
    Laurent-Gengoux, P
    Ilisca, E
    PHYSICAL REVIEW LETTERS, 1999, 83 (20) : 3982 - 3985
  • [26] Anharmonicity-Induced Solitons in One-Dimensional Periodic Lattices
    Lab. Phys. Theor. de la Mat. Cond., case 7020, 2 Place Jussieu, 75251 Paris Cedex 05, France
    不详
    不详
    Phys Rev Lett, 20 (3982-3985):
  • [27] Characterization of the stretched-exponential trap-time distributions in one-dimensional coupled map lattices
    Simdyankin, SI
    Mousseau, N
    Hunt, ER
    PHYSICAL REVIEW E, 2002, 66 (06): : 8 - 066205
  • [28] Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map
    李丰果
    艾保全
    CommunicationsinTheoreticalPhysics, 2011, 55 (06) : 1001 - 1006
  • [29] Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map
    Li Feng-Guo
    Ai Bao-Quan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) : 1001 - 1006
  • [30] Spatiotemporal periodic patterns of a two-dimensional symmetrically coupled map lattices
    Wang, Z.B.
    Hu, G.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (09): : 1668 - 1669