CO2 capture using amine incorporated UiO-66 in atmospheric pressure

被引:0
|
作者
Suresh Mutyala
Ya-Dong Yu
Wei-Guang Jin
Zhi-Shuo Wang
Deng-Yue Zheng
Chun-Rong Ye
Binbin Luo
机构
[1] Shantou University,Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
来源
关键词
Tetraethylenepentamine; UiO-66; CO; capture; Fixed bed reactor; Adsorption kinetic model; Deactivation model;
D O I
暂无
中图分类号
学科分类号
摘要
Composite material, tetraethylenepentamine (TEPA) incorporated UiO-66 was prepared by impregnation method to study CO2 capture in a fixed bed reactor, atmospheric pressure. All synthesized adsorbents were characterized using PXRD, N2 adsorption–desorption isotherms, FT-IR, TGA, SEM, and Elemental analysis. Characterization results have revealed that incorporated TEPA was present within pores of UiO-66. CO2 adsorption was higher on TEPA incorporated UiO-66 compared to UiO-66. It was due to the chemical interaction between –NH2 and CO2. High CO2 adsorption capacity 3.70 mmol g−1 was obtained on 30TEPA/UiO-66 at 75 °C, 1 bar. Because of more flexibility and high dispersive nature of TEPA at this temperature. The same CO2 adsorption capacity was obtained in each adsorption cycle without decomposition of the amine on 30TEPA/UiO-66. Avrami adsorption kinetic model has suggested adsorption of CO2 on composite material was chemical adsorption and deactivation model suggested an initial rate of adsorption was higher on TEPA incorporated UiO-66.
引用
收藏
页码:1831 / 1838
页数:7
相关论文
共 50 条
  • [21] Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66
    Hossain, Mohammad, I
    Cunningham, Jackson D.
    Becker, Tim M.
    Grabick, Bogna E.
    Walton, Krista S.
    Rabideau, Brooks D.
    Glover, T. Grant
    CHEMICAL ENGINEERING SCIENCE, 2019, 203 : 346 - 357
  • [22] Synthesis of UiO-66 in Supercritical CO2 and Its Application in Dye Adsorption
    Wang, Yang
    Wang, Sidi
    Li, Zhen
    Sun, Liwei
    Yang, Xiaoyu
    Tang, Shaokun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (01) : 771 - 780
  • [23] Enhancement in the CO2 uptake of UiO-66 by a simple exposure to ultraviolet light
    Lozano, Luis A.
    Hoyos, Luis A. Salazar
    Faroldi, Betina M. C.
    Zamaro, Juan M.
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [24] Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation
    Kim, Hee-Young
    Kim, Se-Na
    Kim, Jun
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (04): : 470 - 475
  • [25] A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO2 Adsorption and Diffusion in UiO-66
    Magnin, Yann
    Dirand, Estelle
    Orsikowsky, Alejandro
    Plainchault, Melanie
    Pugnet, Veronique
    Cordier, Philippe
    Llewellyn, Philip L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (06): : 3211 - 3220
  • [26] Experimental and computational investigation of CO2 capture on mix-ligand metal-organic framework UiO-66
    Huang, Qiheng
    Ding, Jing
    Huang, Xiang
    Wei, Xiaolan
    Wang, Weilong
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [27] Experimental investigation of CO2 adsorption capacities in bimetallic-doped UiO-66 and UiO-66-NH2 frameworks
    Zhang, Yongjia
    Islam, Md. Amirul
    Saha, Bidyut Baran
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 713
  • [28] An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation
    Prasetya, Nicholaus
    Ladewig, Bradley P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15164 - 15172
  • [29] Design of composite based on UiO-66 and ionic liquid for the CO2 conversion into cyclocarbonate
    Li, Fangfang
    Hu, Yueyue
    Cheng, Yong
    Zhou, Ying-Hua
    MICROPOROUS AND MESOPOROUS MATERIALS, 2024, 365
  • [30] Screening Lewis Pair Moieties for Catalytic Hydrogenation of CO2 in Functionalized UiO-66
    Ye, Jingyun
    Johnson, J. Karl
    ACS CATALYSIS, 2015, 5 (10): : 6219 - 6229