Correlation analysis on GPU systems using NVIDIA’s CUDA

被引:0
|
作者
Daniel Gembris
Markus Neeb
Markus Gipp
Andreas Kugel
Reinhard Männer
机构
[1] Scientific Instrument Manufacturer Bruker BioSpin MRI GmbH,
[2] Institute for Computer Engineering in Mannheim,undefined
[3] University of Heidelberg,undefined
来源
关键词
Correlation and regression analysis; Graphics processing unit (GPU); FPGA; Time series analysis; fMRI; BOLD;
D O I
暂无
中图分类号
学科分类号
摘要
Functional magnetic resonance imaging allows non-invasive measurements of brain dynamics and has already been used for neurofeedback experiments, which relies on real time data processing. The limited computational resources that are typically available for this have hindered the use of connectivity analysis in this context. A basic, but already computationally demanding analysis method of neural connectivity is correlation analysis that computes all pairwise correlations coefficients between the measured time series. The parallel nature of the problem predestines it for an implementation on massive parallel architectures as realized by GPUs and FPGAs. We show what performance benefits can be achieved when compared with current desktop CPUs. The use of correlation analysis is not limited to brain research, but is also relevant in other fields of image processing, e.g. for the analysis of video streams.
引用
收藏
页码:275 / 280
页数:5
相关论文
共 50 条
  • [21] High Performance Processing and Analysis of Geospatial Data Using CUDA on GPU
    Stojanovic, Natalija
    Stojanovic, Dragan
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2014, 14 (04) : 109 - 114
  • [22] Multiple string matching on a GPU using CUDA
    Kouzinopoulos, Charalampos S.
    Michailidis, Panagiotis D.
    Margaritis, Konstantinos G.
    Scalable Computing, 2015, 16 (02): : 121 - 137
  • [23] Canny Edge Detection on GPU using CUDA
    Horvath, Matthew, Jr.
    Bowers, Michael
    Alawneh, Shadi
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 419 - 425
  • [24] MULTIPLE STRING MATCHING ON A GPU USING CUDA
    Kouzinopoulos, Charalampos S.
    Michailidis, Panagiotis D.
    Margaritis, Konstantinos G.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2015, 16 (02): : 121 - 137
  • [25] Parallelization and Optimization of SIFT on GPU Using CUDA
    Zhou, Yonglong
    Mei, Kuizhi
    Ji, Xiang
    Dong, Peixiang
    2013 IEEE 15TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2013 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (HPCC_EUC), 2013, : 1351 - 1358
  • [26] GPU Acceleration using CUDA for Computational Electromagnetics
    Sideris, Constantine
    2024 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM, ACES 2024, 2024,
  • [27] String Matching on a multicore GPU using CUDA
    Kouzinopoulos, Charalampos S.
    Margaritis, Konstantinos G.
    13TH PANHELLENIC CONFERENCE ON INFORMATICS, PROCEEDINGS, 2009, : 14 - 18
  • [28] GPU Acceleration of PROPELLER MRI Using CUDA
    Guo, Hongyu
    Dai, Jianping
    Guo, Hongyu
    He, Yanfa
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2051 - +
  • [29] Singular Value Decomposition on GPU using CUDA
    Lahabar, Sheetal
    Narayanan, P. J.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 840 - 849
  • [30] Computer vision algorithms acceleration using graphic processors NVIDIA CUDA
    Afif, Mouna
    Said, Yahia
    Atri, Mohamed
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (04): : 3335 - 3347