Thermally reduced graphene oxide: synthesis, studies and characterization

被引:0
|
作者
Ana Elisa Ferreira Oliveira
Guilherme Bettio Braga
César Ricardo Teixeira Tarley
Arnaldo César Pereira
机构
[1] Universidade Federal de São João del-Rei,Departamento de Ciências Naturais
[2] UFSJ,Departamento de Química
[3] Universidade Estadual de Londrina,undefined
[4] UEL,undefined
来源
关键词
GO Reduction; Thermal Reduction; Graphene Oxide (GO); Sodium Phosphate Dibasic Heptahydrate; Uncompressed Material;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this study is to synthesize reduced graphene oxide (rGO) using graphite (GR) as a starting material. This paper explains didactic step-by-step of the synthesis, the role of each reagent, showing pictures of the entire process and including a well-explained characterization study. The rGO was prepared using modified Hummer’s method, followed by thermal reduction. The materials were characterized from the starting material (GR), through the intermediate material (GO) and finally the material of interest (rGO). Various techniques and procedures were used to characterize the materials such as X-ray diffraction, infrared and Raman spectroscopy, scanning electron microscopy, electrochemical characterization and dispersion analysis. Morphological and structural characterization of the obtained materials suggests that the synthesis and reduction to obtain rGO were effective. The obtained materials were electrochemically evaluated using ferri/ferrocyanide redox probe. The association of chemical oxidation of GR with KMnO4 in the presence of H2SO4 with further thermal reduction makes possible to produce rGO in large scale and with quality as noticed by outstanding electrochemical behavior toward the redox couple [Fe(CN)6]3−/[Fe(CN)6]4− probe.
引用
收藏
页码:12005 / 12015
页数:10
相关论文
共 50 条
  • [21] Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets
    Aslam, M.
    Kalyar, M. A.
    Raza, Z. A.
    MATERIALS RESEARCH EXPRESS, 2016, 3 (10)
  • [22] Synthesis and characterization of acid treated reduced graphene oxide
    Tambe, Pankaj
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 1294 - 1297
  • [23] Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide
    Maryam Sabbaghan
    Hossein Charkhan
    Masoumeh Ghalkhani
    Javad Beheshtian
    Research on Chemical Intermediates, 2019, 45 : 487 - 505
  • [24] Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide
    Sabbaghan, Maryam
    Charkhan, Hossein
    Ghalkhani, Masoumeh
    Beheshtian, Javad
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (02) : 487 - 505
  • [25] Synthesis and characterization of graphene oxide and reduced graphene oxide membranes for water purification applications
    Jephin K. Jose
    Biswajit Mishra
    Christie Thomas Cherian
    Bijay P. Tripathi
    Manoj Balachandran
    Emergent Materials, 2023, 6 : 911 - 916
  • [26] Synthesis and characterization of graphene oxide and reduced graphene oxide membranes for water purification applications
    Jose, Jephin K.
    Mishra, Biswajit
    Cherian, Christie Thomas
    Tripathi, Bijay P.
    Balachandran, Manoj
    EMERGENT MATERIALS, 2023, 6 (03) : 911 - 916
  • [27] Synthesis and characterization of graphene oxide, tin oxide, and reduced graphene oxide-tin oxide nanocomposites
    Reshma, R. P.
    Abishek, N. S.
    Gopalakrishna, K. Naik
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 165
  • [28] Electrical properties of thermally reduced graphene oxide
    Bocharov, G. S.
    Eletskii, A. V.
    Mel'nikov, V. P.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2018, 9 (01): : 98 - 101
  • [29] Supercapacitor performances of thermally reduced graphene oxide
    Zhao, Bing
    Liu, Peng
    Jiang, Yong
    Pan, Dengyu
    Tao, Haihua
    Song, Jinsong
    Fang, Tao
    Xu, Weiwen
    JOURNAL OF POWER SOURCES, 2012, 198 : 423 - 427
  • [30] Energy storage of thermally reduced graphene oxide
    Kim, Jung Min
    Hong, Won G.
    Lee, Sang Moon
    Chang, Sung Jin
    Jun, Yongseok
    Kim, Byung Hoon
    Kim, Hae Jin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (08) : 3799 - 3804