A kernel learning framework for domain adaptation learning

被引:0
|
作者
JianWen Tao
FuLai Chung
ShiTong Wang
机构
[1] Jiangnan University,School of Digital Media
[2] Hong Kong Polytechnic University,Department of Computing
[3] Zhejiang Business Technology Institute,School of Information Engineering
来源
关键词
domain adaptation learning; support vector machine; multiple kernel learning; maximum mean discrepancy; maximum scatter discrepancy;
D O I
暂无
中图分类号
学科分类号
摘要
Domain adaptation learning (DAL) methods have shown promising results by utilizing labeled samples from the source (or auxiliary) domain(s) to learn a robust classifier for the target domain which has a few or even no labeled samples. However, there exist several key issues which need to be addressed in the state-of-theart DAL methods such as sufficient and effective distribution discrepancy metric learning, effective kernel space learning, and multiple source domains transfer learning, etc. Aiming at the mentioned-above issues, in this paper, we propose a unified kernel learning framework for domain adaptation learning and its effective extension based on multiple kernel learning (MKL) schema, regularized by the proposed new minimum distribution distance metric criterion which minimizes both the distribution mean discrepancy and the distribution scatter discrepancy between source and target domains, into which many existing kernel methods (like support vector machine (SVM), v-SVM, and least-square SVM) can be readily incorporated. Our framework, referred to as kernel learning for domain adaptation learning (KLDAL), simultaneously learns an optimal kernel space and a robust classifier by minimizing both the structural risk functional and the distribution discrepancy between different domains. Moreover, we extend the framework KLDAL to multiple kernel learning framework referred to as MKLDAL. Under the KLDAL or MKLDAL framework, we also propose three effective formulations called KLDAL-SVM or MKLDAL-SVM with respect to SVM and its variant µ-KLDALSVM or µ-MKLDALSVM with respect to v-SVM, and KLDAL-LSSVM or MKLDAL-LSSVM with respect to the least-square SVM, respectively. Comprehensive experiments on real-world data sets verify the outperformed or comparable effectiveness of the proposed frameworks.
引用
收藏
页码:1983 / 2007
页数:24
相关论文
共 50 条
  • [31] Revisiting (ε, γ, τ)-similarity learning for domain adaptation
    Dhouib, Sofien
    Redko, Ievgen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] Domain Adaptation for Reinforcement Learning on the Atari
    Carr, Thomas
    Chli, Maria
    Vogiatzis, George
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1859 - 1861
  • [33] Transfer Learning through Domain Adaptation
    Zhang, Huaxiang
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT III, 2011, 6677 : 505 - 512
  • [34] DiAd: Domain Adaptation for Learning at Scale
    Zeng, Ziheng
    Chaturvedi, Snigdha
    Bhat, Suma
    Roth, Dan
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), 2019, : 185 - 194
  • [35] Unsupervised Domain Adaptation with Similarity Learning
    Pinheiro, Pedro O.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8004 - 8013
  • [36] Two Stage Domain Adaptation Learning
    Tian L.
    Tang Y.
    Zhang W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (09): : 773 - 784
  • [37] On Learning Invariant Representations for Domain Adaptation
    Zhao, Han
    des Combes, Remi Tachet
    Zhang, Kun
    Gordon, Geoffrey J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [38] DAML: Domain Adaptation Metric Learning
    Geng, Bo
    Tao, Dacheng
    Xu, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (10) : 2980 - 2989
  • [39] Stochastic Adversarial Learning for Domain Adaptation
    Chien, Jen-Tzung
    Huang, Ching-Wei
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [40] Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy
    Tao, Lin
    Cao, Tianao
    Wang, Qisong
    Liu, Dan
    Sun, Jinwei
    SENSORS, 2022, 22 (17)