In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions

被引:0
|
作者
Z.-L. Cheng
R. Skouta
H. Vazquez
J. R. Widawsky
S. Schneebeli
W. Chen
M. S. Hybertsen
R. Breslow
L. Venkataraman
机构
[1] Columbia University,Department of Chemistry
[2] Center for Electron Transport in Molecular Nanostructures,Department of Applied Physics and Applied Mathematics
[3] 530 W 120th Street,undefined
[4] New York,undefined
[5] New York 10027,undefined
[6] Columbia University,undefined
[7] Center for Functional Nanomaterials,undefined
[8] Brookhaven National Laboratory,undefined
来源
Nature Nanotechnology | 2011年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Charge transport across metal–molecule interfaces has an important role in organic electronics1. Typically, chemical link groups such as thiols2 or amines3 are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal–carbon coupling has been shown through C60, benzene and π-stacked benzene4,5,6,7, but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe3)-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique2,3. Gold atoms at the electrode displace the SnMe3 linkers, leading to the formation of direct Au–C bonded single-molecule junctions with a conductance that is ∼100 times larger than analogous alkanes with most other terminations. The conductance of these Au–C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au–C sigma (σ) bond is formed. This offers a new method for making reproducible and highly conducting metal–organic contacts.
引用
收藏
页码:353 / 357
页数:4
相关论文
共 50 条
  • [21] Single-molecule resistance measured by repeated formation of molecular junctions
    Nikiforov, M
    MRS BULLETIN, 2003, 28 (11) : 790 - 792
  • [22] Single-Molecule Resistance Measured by Repeated Formation of Molecular Junctions
    Maxim Nikiforov
    MRS Bulletin, 2003, 28 : 790 - 792
  • [23] The spontaneous formation of single-molecule junctions via terminal alkynes
    Pla-Vilanova, Pepita
    Aragones, Albert C.
    Ciampi, Simone
    Sanz, Fausto
    Darwish, Nadim
    Diez-Perez, Ismael
    NANOTECHNOLOGY, 2015, 26 (38)
  • [24] Measurement of single-molecule resistance by repeated formation of molecular junctions
    Xu, BQ
    Tao, NJJ
    SCIENCE, 2003, 301 (5637) : 1221 - 1223
  • [25] In Situ Nanopore Fabrication and Single-Molecule Sensing with Microscale Liquid Contacts
    Arcadia, Christopher E.
    Reyes, Carlos C.
    Rosenstein, Jacob K.
    ACS NANO, 2017, 11 (05) : 4907 - 4915
  • [26] Alternative types of molecule-decorated atomic chains in Au-CO-Au single-molecule junctions
    Balogh, Zoltan
    Makk, Peter
    Halbritter, Andras
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 1369 - 1376
  • [27] Highly-effective gating of single-molecule junctions: an electrochemical approach
    Baghernejad, Masoud
    Manrique, David Zsolt
    Li, Chen
    Pope, Thomas
    Zhumaev, Ulmas
    Pobelov, Ilya
    Moreno-Garcia, Pavel
    Kaliginedi, Veerabhadrarao
    Huang, Cancan
    Hong, Wenjing
    Lambert, Colin
    Wandlowski, Thomas
    CHEMICAL COMMUNICATIONS, 2014, 50 (100) : 15975 - 15978
  • [28] Photoconductance of organic single-molecule contacts
    Viljas, J. K.
    Pauly, F.
    Cuevas, J. C.
    PHYSICAL REVIEW B, 2007, 76 (03)
  • [29] Single-molecule covalent magnetic tweezers
    Chakraborty, Soham
    Haldar, Shubhasis
    TRENDS IN BIOCHEMICAL SCIENCES, 2023, 48 (08) : 740 - 741
  • [30] The Role of Symmetry in Single-Molecule Junctions
    Loertscher, Emanuel
    CHEMPHYSCHEM, 2011, 12 (16) : 2887 - 2889