An estimator of the tail index based on increment ratio statistics

被引:0
|
作者
Vaičiulis M. [1 ]
机构
[1] Institute of Mathematics and Informatics, Vilnius LT-08663
关键词
Central limit theorem; Domain of attraction; Increment ratio statistic; Tail index;
D O I
10.1007/s10986-009-9040-1
中图分类号
学科分类号
摘要
In this paper, we introduce an increment ratio statistic (IR N,m ) based estimator for estimation of the tail index of a heavy-tailed distribution. For i.i.d. observations depending on the zone of attraction of an α-stable law (0 < α < 2), the IR N,m statistic converges to a decreasing function L(α) as both the sample size N and bandwidth parameter m tend to infinity. We obtain a rate of decay of the bias EIR N,m -L(α) and mean square error E(IR N,m -L(α))2. A central limit theorem √N/m(IR N,m -EIR N,m) N(0,σ2(α)) is also obtained. Monte Carlo simulations show that our tail index estimator has quite good empirical mean square error and, unlike the Hill estimator, is not so sensitive to a change of bandwidth parameter m. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:222 / 233
页数:11
相关论文
共 50 条
  • [21] A robust and efficient estimator for the tail index of inverse Pareto distribution
    Safari, Muhammad Aslam Mohd
    Masseran, Nurulkamal
    Ibrahim, Kamarulzaman
    Hussain, Saiful Izzuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 517 : 431 - 439
  • [22] The harmonic moment tail index estimator: asymptotic distribution and robustness
    Beran, Jan
    Schell, Dieter
    Stehlik, Milan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 193 - 220
  • [23] Almost sure convergence of a tail index estimator in the presence of censoring
    Delafosse, E
    Guillou, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) : 375 - 380
  • [24] An Estimator of Heavy Tail Index through the Generalized Jackknife Methodology
    Liu, Weiqi
    Xing, Hongwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [25] Asymptotic normality of location invariant heavy tail index estimator
    Jiaona Li
    Zuoxiang Peng
    Saralees Nadarajah
    Extremes, 2010, 13 : 269 - 290
  • [26] The harmonic moment tail index estimator: asymptotic distribution and robustness
    Jan Beran
    Dieter Schell
    Milan Stehlík
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 193 - 220
  • [27] Tail index estimation in models of generalized order statistics
    Marohn, F
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (05) : 1057 - 1064
  • [28] A nonparametric estimator for the conditional tail index of Pareto-type distributions
    Ma, Yaolan
    Wei, Bo
    Huang, Wei
    METRIKA, 2020, 83 (01) : 17 - 44
  • [29] Estimation of the conditional tail index using a smoothed local Hill estimator
    Laurent Gardes
    Gilles Stupfler
    Extremes, 2014, 17 : 45 - 75
  • [30] Estimating the conditional tail index by integrating a kernel conditional quantile estimator
    Gardes, L.
    Guillou, A.
    Schorgen, A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1586 - 1598