Identity checking problem for transformation monoids

被引:0
|
作者
Ondřej Klíma
机构
[1] Masaryk University,Department of Mathematics and Statistics
来源
Semigroup Forum | 2012年 / 84卷
关键词
Checking identities; Finite semigroup; Transformation monoid; Computational complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the computational complexity of checking identities in a fixed finite monoid. We prove that this problem is coNP-complete for the monoid of all full transformations of a 4-element set. This result completes the description of the complexity of checking identities in the transformation monoids.
引用
收藏
页码:487 / 498
页数:11
相关论文
共 50 条
  • [31] Transformation monoids with finite monoidal intervals
    Dorman, Miklos
    ALGEBRA UNIVERSALIS, 2017, 77 (02) : 163 - 189
  • [32] Limit Varieties of Monoids Satisfying a Certain Identity
    Gusev, Sergey V.
    Li, Yuxian
    Zhang, Wenting
    ALGEBRA COLLOQUIUM, 2025, 32 (01) : 1 - 40
  • [33] THE REALIZATION PROBLEM FOR SOME WILD MONOIDS AND THE ATIYAH PROBLEM
    Ara, P.
    Goodearl, K. R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) : 5665 - 5710
  • [34] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [35] COMPLEXITY RESULTS ON THE CONJUGACY PROBLEM FOR MONOIDS
    NARENDRAN, P
    OTTO, F
    THEORETICAL COMPUTER SCIENCE, 1985, 35 (2-3) : 227 - 243
  • [36] THE INTERSECTION PROBLEM FOR ALPHABETIC VECTOR MONOIDS
    HARJU, T
    KEESMAAT, NW
    KLEIJN, HCM
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1994, 28 (3-4): : 295 - 301
  • [37] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [38] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350
  • [39] THE WORD PROBLEM FOR NILPOTENT INVERSE MONOIDS
    SILVA, PV
    SEMIGROUP FORUM, 1995, 51 (03) : 285 - 293
  • [40] On the word problem for weakly compressible monoids
    Nyberg-Brodda, Carl-Fredrik
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4731 - 4745