Given integer-valued wagers Feller (1968) has established upper and lower bounds on the probability of ruin, which often turn out to be very close to each other. However, the exact calculation of these bounds depends on the unique non-trivial positive root of the equation Φ(ρ) = 1, where Φ is the probability generating function for the wager. In the situation of incomplete information about the distribution of the wager, one is interested in bounds depending only on the first few moments of the wager. Ethier and Khoshnevisan (2002) derive bounds depending explicitly on the first four moments. However, these bounds do not make the best possible use of the available information. Based on the theory of s-convex extremal random variables among arithmetic and real random variables, a substantial improvement can be given. By fixed first four moments of the wager, the obtained new bounds are nearly perfect analytical approximations to the exact bounds of Feller.