Frequency identification of Hammerstein-Wiener systems with backlash input nonlinearity

被引:1
|
作者
Adil Brouri
Laila Kadi
Smail Slassi
机构
[1] Moulay Ismail University,ENSAM
关键词
Backlash-inverse operator; backlash operator; Fourier expansions; Hammerstein systems; Wiener systems;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of system identification is addressed for Hammerstein-Wiener systems that involve memory operator of backlash type bordered by straight lines as input nonlinearity. The system identification of this model is investigated by using easily generated excitation signals. Moreover, the prior knowledge of the nonlinearity type, being backlash or backlash-inverse, is not required. The nonlinear dynamics and the unknown structure of the linear subsystem lead to a highly nonlinear identification problem. Presently, the output nonlinearity may be noninvertible and the linear subsystem may be nonparametric. Interestingly, the system nonlinearities are identified first using a piecewise constant signal. In turn, the linear subsystem is identified using a frequency approach.
引用
收藏
页码:2222 / 2232
页数:10
相关论文
共 50 条
  • [31] Modeling of Hammerstein-Wiener processes with special input test signals
    Park, HC
    Sung, SW
    Lee, J
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (03) : 1029 - 1038
  • [32] Identification of pH Process using Hammerstein-Wiener Model
    Abinayadhevi, P.
    Prasad, S. J. Suji
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [33] Support Vector Regression For Hammerstein-Wiener Model Identification
    Karthik, C.
    Ramalakshmi, A.
    Valarmathi, K.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [34] Identification of Nonlinear Systems Using the Hammerstein-Wiener Model with Improved Orthogonal Functions
    Nikolic, Sasa S.
    Milovanovic, Miroslav B.
    Dankovic, Nikola B.
    Mitic, Darko B.
    Peric, Stanisa Lj.
    Djordjevic, Andjela D.
    Djekic, Petar S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2023, 29 (02) : 4 - 11
  • [35] Errors-In-Variables Hammerstein-Wiener model identification
    Su, Hao
    Hou, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1378 - 1383
  • [36] Improved system identification method for Hammerstein-Wiener processes
    Sung, Su Whan
    Je, Cheol Ho
    Lee, Jietae
    Lee, Dong Hyun
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (04) : 631 - 636
  • [37] Identification of Hammerstein-Wiener models with hysteresis front nonlinearities
    Brouri, Adil
    Chaoui, Fatima-Zahra
    Giri, Fouad
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (12) : 3353 - 3367
  • [38] Predictive control of Hammerstein-Wiener nonlinearity based on polytopic terminal region
    Li Y.
    Mao Z.-Z.
    Wang Y.
    Yuan P.
    Jia M.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2011, 37 (05): : 629 - 638
  • [39] An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    AUTOMATICA, 1998, 34 (03) : 333 - 338
  • [40] Parameter Identification for the Hammerstein-Wiener Nonlinear Time Delay Systems with Process Noises
    Li, Feng
    Han, Jiahu
    He, Naibao
    Cao, Qingfeng
    Xu, Liangliang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (03) : 1726 - 1752