Stratospheric water vapor: an important climate feedback

被引:0
|
作者
Antara Banerjee
Gabriel Chiodo
Michael Previdi
Michael Ponater
Andrew J. Conley
Lorenzo M. Polvani
机构
[1] Columbia University,Department of Applied Physics and Applied Mathematics
[2] University of Colorado Boulder,Cooperative Institute for Research in Environmental Sciences
[3] National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division,Department of Earth and Environmental Sciences
[4] Lamont Doherty Earth Observatory,Deutsches Zentrum für Luft
[5] Institut für Physik der Atmosphäre, und Raumfahrt (DLR)
[6] National Center for Atmospheric Research,undefined
来源
Climate Dynamics | 2019年 / 53卷
关键词
Stratospheric water vapor; Climate feedback; Climate change; Partial radiative perturbation; Radiative kernel; CMIP5 models;
D O I
暂无
中图分类号
学科分类号
摘要
The role of stratospheric water vapor (SWV) changes, in response to increasing CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}, as a feedback component of quantitative significance for climate sensitivity has remained controversial. Here, we calculate the SWV climate feedback under abrupt CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} quadrupling in the CMIP5 ensemble of models. All models robustly show a moistening of the stratosphere, causing a global mean net stratosphere adjusted radiative perturbation of 0.89±0.27Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.89\pm 0.27\,\hbox {Wm}^{-2}$$\end{document} at the reference tropopause. The stratospheric temperature adjustment is a crucial component of this radiative perturbation. The associated climate feedback is 0.17±0.05Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.17\pm 0.05\,\hbox {Wm}^{-2}\,\hbox{K}^{-1}$$\end{document}, with a considerable inter-model range of 0.12–0.28 Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}. Taking into account the rise in tropopause height under 4×CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times \hbox {CO}_2$$\end{document} slightly reduces the feedback to 0.15±0.04Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.15\pm 0.04\,\hbox {Wm}^{-2}\,\hbox {K}^{-1}$$\end{document}, with a range of 0.10–0.26Wm-2K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.26\,\hbox {Wm}^{-2} \,\hbox {K}^{-1}$$\end{document}. The SWV radiative perturbation peaks in the midlatitudes and not the tropics: this is due primarily to increases in SWV in the extratropical lowermost stratosphere, which cause the majority (over three quarters) of the global mean feedback. Based on these results, we suggest an increased focus on understanding drivers of water vapor trends in the extratropical lowermost stratosphere. We conclude that the SWV feedback is important, being on the same order of magnitude as the global mean surface albedo and cloud feedbacks in the multi-model mean.
引用
收藏
页码:1697 / 1710
页数:13
相关论文
共 50 条
  • [31] VERTICAL PROFILES OF STRATOSPHERIC WATER-VAPOR
    LOUISNARD, N
    GIRARD, A
    EICHEN, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1980, 290 (15): : 385 - 388
  • [32] Shortwave radiative forcing by stratospheric water vapor
    Zhong, WY
    Haigh, JD
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (03)
  • [33] RECENT MEASUREMENTS OF STRATOSPHERIC WATER-VAPOR
    MASTENBROOK, HJ
    JOURNAL OF PHOTOCHEMISTRY, 1976, 5 (02): : 174 - 174
  • [34] Simulations of the interannual variability of stratospheric water vapor
    Geller, MA
    Zhou, XL
    Zhang, MH
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2002, 59 (06) : 1076 - 1085
  • [35] LATITUDINAL PROFILES OF STRATOSPHERIC WATER-VAPOR
    KUHN, PM
    STEARNS, LP
    LOJKO, MS
    GEOPHYSICAL RESEARCH LETTERS, 1975, 2 (06) : 227 - 230
  • [36] POSITIVE WATER-VAPOR FEEDBACK IN CLIMATE MODELS CONFIRMED BY SATELLITE DATA
    RIND, D
    CHIOU, EW
    CHU, W
    LARSEN, J
    OLTMANS, S
    LERNER, J
    MCCORMICK, MP
    MCMASTER, L
    NATURE, 1991, 349 (6309) : 500 - 503
  • [37] Trends of Lower-to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models
    Hu Ding-Zhu
    Han Yuan-Yuan
    Sang Wen-Jun
    Xie Fei
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2015, 8 (01) : 57 - 62
  • [38] Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations
    Austin, John
    Wilson, John
    Li, Feng
    Vomel, Holger
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2007, 64 (03) : 905 - 921
  • [39] Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models
    HU Ding-Zhu
    HAN Yuan-Yuan
    SANG Wen-Jun
    XIE Fei
    Atmospheric and Oceanic Science Letters, 2015, 8 (01) : 57 - 62
  • [40] Advection-condensation paradigm for stratospheric water vapor
    Liu, Y. S.
    Fueglistaler, S.
    Haynes, P. H.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115