Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing

被引:0
|
作者
Vidhi Zala
Varun Shankar
Shankar P. Sastry
Robert M. Kirby
机构
[1] University of Utah,Scientific Computing and Imaging Institute
[2] University of Utah,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 77卷
关键词
Curvilinear mesh generation; Radial basis functions; Conformal mapping; Mesh deformation; Mesh adaptation; Mesh quality; 65 (L/N/M)50; 30E05; 41A05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new iterative technique based on radial basis function (RBF) interpolation and smoothing for the generation and smoothing of curvilinear meshes from straight-sided or other curvilinear meshes. Our technique approximates the coordinate deformation maps in both the interior and boundary of the curvilinear output mesh by using only scattered nodes on the boundary of the input mesh as data sites in an interpolation problem. Our technique produces high-quality meshes in the deformed domain even when the deformation maps are singular due to a new iterative algorithm based on modification of the RBF shape parameter. Due to the use of RBF interpolation, our technique is applicable to both 2D and 3D curvilinear mesh generation without significant modification.
引用
收藏
页码:397 / 418
页数:21
相关论文
共 50 条
  • [21] An error analysis for radial basis function interpolation
    Johnson, MJ
    NUMERISCHE MATHEMATIK, 2004, 98 (04) : 675 - 694
  • [22] Analysis of radial basis function interpolation approach
    You-Long Zou
    Fa-Long Hu
    Can-Can Zhou
    Chao-Liu Li
    Keh-Jim Dunn
    Applied Geophysics, 2013, 10 : 397 - 410
  • [23] Stationary binary subdivision schemes using radial basis function interpolation
    Lee, Byung-Gook
    Lee, Yeon Ju
    Yoon, Jungho
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 57 - 72
  • [24] Stationary binary subdivision schemes using radial basis function interpolation
    Byung-Gook Lee
    Yeon Ju Lee
    Jungho Yoon
    Advances in Computational Mathematics, 2006, 25 : 57 - 72
  • [25] Impulse Noise Removal Using Adaptive Radial Basis Function Interpolation
    Veerakumar, T.
    Jagannath, Ravi Prasad K.
    Subudhi, Badri Narayan
    Esakkirajan, S.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (03) : 1192 - 1223
  • [26] Impulse Noise Removal Using Adaptive Radial Basis Function Interpolation
    T. Veerakumar
    Ravi Prasad K. Jagannath
    Badri Narayan Subudhi
    S. Esakkirajan
    Circuits, Systems, and Signal Processing, 2017, 36 : 1192 - 1223
  • [27] Image interpolation for progressive transmission by using radial basis function networks
    Sigitani, T
    Iiguni, Y
    Maeda, H
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 381 - 390
  • [28] Adaptive radial basis function mesh deformation using data reduction
    Gillebaart, T.
    Blom, D. S.
    van Zuijlen, A. H.
    Bijl, H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 997 - 1025
  • [29] Mesh Deformation Based on Radial Basis Function Interpolation Applied to Low-Frequency Electromagnetic Problem
    Henneron, Thomas
    Pierquin, Antoine
    Clenet, Stephane
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [30] Efficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole method
    Coulier, Pieter
    Darve, Eric
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 308 : 286 - 309