We obtain existence and multiplicity of solutions for the quasilinear Schrödinger equation
-Δu+V(x)u-Δ(u2)u=g(x,u),x∈RN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta u + V(x)u - \Delta(u^2)u = g(x,u), \,\, x \in \mathbb{R}^N,$$\end{document}where V is a positive potential and the nonlinearity g(x, t) behaves like t at the origin and like t3 at infinity. In the proof, we apply a changing of variables besides variational methods. The obtained solutions belong to W1,2(RN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W^{1,2}(\mathbb{R}^N)}$$\end{document} .