Steady-State Computations Using Summation-by-Parts Operators

被引:0
|
作者
Magnus Svärd
Ken Mattsson
Jan Nordström
机构
[1] Uppsala University,Department of Information Technology
[2] Uppsala University,Department of Information Technology
[3] The Swedish Defence Research Agency,Division of Systems Technology, Department of Computational Physics, Department of Information Technology
[4] Uppsala University,undefined
来源
Journal of Scientific Computing | 2005年 / 24卷
关键词
High order finite differences; summation-by-parts operators; convergence to steady state; stability;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns energy stability on curvilinear grids and its impact on steady-state calulations. We have done computations for the Euler equations using fifth order summation-by-parts block and diagonal norm schemes. By imposing the boundary conditions weakly we obtain a fifth order energy-stable scheme. The calculations indicate the significance of energy stability in order to obtain convergence to steady state. Furthermore, the difference operators are improved such that faster convergence to steady state are obtained.
引用
收藏
页码:79 / 95
页数:16
相关论文
共 50 条
  • [21] Optimization of multidimensional diagonal-norm summation-by-parts operators on simplices
    Marchildon, Andre L.
    Zingg, David W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 411
  • [22] MULTIDIMENSIONAL SUMMATION-BY-PARTS OPERATORS: GENERAL THEORY AND APPLICATION TO SIMPLEX ELEMENTS
    Hicken, Jason E.
    Fernandez, David C. Del Rey
    Zingg, David W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A1935 - A1958
  • [23] Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators
    David C. Del Rey Fernández
    Jason E. Hicken
    David W. Zingg
    Journal of Scientific Computing, 2018, 75 : 83 - 110
  • [24] Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators
    Fernandez, David C. Del Rey
    Hicken, Jason E.
    Zingg, David W.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 83 - 110
  • [25] FULL-SPECTRUM DISPERSION RELATION PRESERVING SUMMATION-BY-PARTS OPERATORS
    Williams, Christopher
    Duru, Kenneth
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1565 - 1588
  • [26] Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators
    Ranocha, Hendrik
    Glaubitz, Jan
    Oeffner, Philipp
    Sonar, Thomas
    APPLIED NUMERICAL MATHEMATICS, 2018, 128 : 1 - 23
  • [27] Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators
    Carpenter, Mark H.
    Nordstrom, Jan
    Gottlieb, David
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 118 - 150
  • [28] Extended skew-symmetric form for summation-by-parts operators and varying Jacobians
    Ranocha, Hendrik
    Oeffner, Philipp
    Sonar, Thomas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 342 : 13 - 28
  • [29] Time-stable overset grid method for hyperbolic problems using summation-by-parts operators
    Sharan, Nek
    Pantano, Carlos
    Bodony, Daniel J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 : 199 - 230
  • [30] Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators
    Mark H. Carpenter
    Jan Nordström
    David Gottlieb
    Journal of Scientific Computing, 2010, 45 : 118 - 150