Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization

被引:0
|
作者
D. Jahed Armaghani
M. Hajihassani
E. Tonnizam Mohamad
A. Marto
S. A. Noorani
机构
[1] Universiti Teknologi Malaysia (UTM),Faculty of Civil Engineering, Department of Geotechnics and Transportation
来源
关键词
Blasting; Flyrock distance; Ground vibration; Artificial neural networks; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Blasting is a major component of the construction and mining industries in terms of rock fragmentation and concrete demolition. Blast designers are constantly concerned about flyrock and ground vibration induced by blasting as adverse and unintended effects of explosive usage on the surrounding areas. In recent years, several researches have been done to predict flyrock and ground vibration by means of conventional backpropagation (BP) artificial neural network (ANN). However, the convergence rate of the BP-ANN is relatively slow and solutions can be trapped at local minima. Since particle swarm optimization (PSO) is a robust global search algorithm, it can be used to improve ANNs' performance. In this study, a novel approach of incorporating PSO algorithm with ANN has been proposed to eliminate the limitation of the BP-ANN. This approach was applied to simulate the flyrock distance and peak particle velocity (PPV) induced by blasting. PSO parameters and optimal network architecture were determined using sensitivity analysis and trial and error method, respectively. Finally, a model was selected, and the proposed model was trained and tested using 44 datasets obtained from three granite quarry sites in Malaysia. Each dataset involved ten inputs, including the most influential parameters on flyrock distance and PPV, and two outputs. The results indicate that the proposed method is able to predict flyrock distance and PPV induced by blasting with a high degree of accuracy. Sensitivity analysis was also conducted to determine the influence of each parameter on flyrock distance and PPV. The results show that the powder factor and charge per delay are the most effective parameters on flyrock distance, whereas sub-drilling and charge per delay are the most effective parameters on PPV.
引用
收藏
页码:5383 / 5396
页数:13
相关论文
共 50 条
  • [21] Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting
    Amir Saghatforoush
    Masoud Monjezi
    Roohollah Shirani Faradonbeh
    Danial Jahed Armaghani
    Engineering with Computers, 2016, 32 : 255 - 266
  • [22] Autoignition Temperature Prediction Using an Artificial Neural Network with Particle Swarm Optimization
    Lazzus, Juan A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2011, 32 (05) : 957 - 973
  • [23] Autoignition Temperature Prediction Using an Artificial Neural Network with Particle Swarm Optimization
    Juan A. Lazzús
    International Journal of Thermophysics, 2011, 32
  • [24] A Novel Hunger Games Search Optimization-Based Artificial Neural Network for Predicting Ground Vibration Intensity Induced by Mine Blasting
    Hoang Nguyen
    Bui, Xuan-Nam
    NATURAL RESOURCES RESEARCH, 2021, 30 (05) : 3865 - 3880
  • [25] A Novel Hunger Games Search Optimization-Based Artificial Neural Network for Predicting Ground Vibration Intensity Induced by Mine Blasting
    Hoang Nguyen
    Xuan-Nam Bui
    Natural Resources Research, 2021, 30 : 3865 - 3880
  • [26] A new evolved artificial neural network based on particle swarm optimization
    Zhang, GY
    Sha, Y
    Zhang, J
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 9347 - 9349
  • [27] Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine
    Parichehr Bayat
    Masoud Monjezi
    Mojtaba Rezakhah
    Danial Jahed Armaghani
    Natural Resources Research, 2020, 29 : 4121 - 4132
  • [28] Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine
    Bayat, Parichehr
    Monjezi, Masoud
    Rezakhah, Mojtaba
    Armaghani, Danial Jahed
    NATURAL RESOURCES RESEARCH, 2020, 29 (06) : 4121 - 4132
  • [29] Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques
    Zangoei, Atousa
    Monjezi, Masoud
    Armaghani, Danial Jahed
    Mehrdanesh, Amirhossein
    Ahmadian, Saeid
    ENVIRONMENTAL EARTH SCIENCES, 2022, 81 (13)
  • [30] Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques
    Atousa Zangoei
    Masoud Monjezi
    Danial Jahed Armaghani
    Amirhossein Mehrdanesh
    Saeid Ahmadian
    Environmental Earth Sciences, 2022, 81